YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Koelectra-five-sentiment-classification

Koelectra on hugging face Transformers for Psychological Counseling

how to use

from transformers import ElectraModel, ElectraTokenizer

model = ElectraModel.from_pretrained("withU/Koelectra-five-sentiment-classification")
tokenizer = ElectraTokenizer.from_pretrained("withU/Koelectra-five-sentiment-classification")
categories = "withU/Koelectra-five-sentiment-classification" # ์นดํ…Œ๊ณ ๋ฆฌ, index ํŒŒ์ผ

sentence = "๋‚˜๋Š” ๋ฐฉ๊ธˆ ๋ฐฅ์„ ๋จน์—ˆ๋‹ค."
inputs = tokenizer.encode(sentence, return_tensors="pt")
outputs = model(**inputs)
softmax_logit = nn.Softmax(outputs).dim
softmax_logit = softmax_logit[0].squeeze()
max_index = torch.argmax(softmax_logit).item()
prediction = max_index

print(sentence, categories[prediction])

dataset finetuned on

references

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support