File size: 2,041 Bytes
1901025
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
base_model: axolotl-quants/Llama-4-Scout-17B-16E-Linearized-bnb-nf4-bf16
model_type: Llama4ForConditionalGeneration
  # Automatically upload checkpoint and final model to HF
  # hub_model_id: username/custom_model_name

strict: false

# torch_compile: true
plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_glu_activation: true
liger_rms_norm: true
liger_layer_norm: true

llama4_linearized_experts: true
load_in_4bit: true
adapter: qlora
lora_r: 32
lora_alpha: 64
lora_target_modules:
  - self_attn.q_proj
  - self_attn.k_proj
  - self_attn.v_proj
  - self_attn.o_proj
  - shared_expert.gate_proj
  - shared_expert.up_proj
  - shared_expert.down_proj
    # - experts.gate_projs.[0-9]+$
    # - experts.up_projs.[0-9]+$
    # - experts.down_projs.[0-9]+$
lora_modules_to_save:
  # - lm_head
  # - embed_tokens

chat_template: llama4
datasets:
  - path: mlabonne/FineTome-100k
    type: chat_template
    split: train[:20%]
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value

dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 1e-4

bf16: true
tf32: true

logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 1
saves_per_epoch: 1
weight_decay: 0.0
fsdp:
  - auto_wrap
  - full_shard
fsdp_config:
  fsdp_transformer_layer_cls_to_wrap: Llama4TextDecoderLayer
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_activation_checkpointing: true
special_tokens:
  pad_token: <|finetune_right_pad_id|>
  eos_token: <|eot|>