metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:200266
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: distilbert/distilroberta-base
widget:
- source_sentence: >-
A couple is a standing together the woman is adjusting a flower on the
man's lapel and they are dressed in wedding apparel.
sentences:
- the two people were together
- The men and women are dressed in clothes for the beach.
- A couple is outside with their dog.
- There are several people standing.
- People are going to a wedding.
- A couple of people stand on stage.
- source_sentence: >-
A man wearing a blue hat and a blue shirt selling bananas from his wheel
cart on the street.
sentences:
- A vendor selling bananas.
- A vendor is outside with other people.
- A man peels fruit.
- The man is on a sidewalk.
- A fruit market is selling vegetables
- A man in a store.
- source_sentence: >-
A woman with a bright red umbrella is jumping high in the air, she has on
a knit hat and black shirt and colorful boots.
sentences:
- A woman in black is jumping in the air with a red umbrella.
- A woman outside.
- The woman is not standing up.
- woman stands on ladder
- There is a woman wearing purple outside.
- A woman is sitting outside.
- source_sentence: A man is taking pictures hanging outside of a red rally car.
sentences:
- The man is near the car.
- people take pictures
- A man outside.
- The man is outdoors.
- A man painting outside.
- A vehicle travels outdoors.
- source_sentence: A man reading the paper at a cafe.
sentences:
- A man starring at a piece of paper.
- The man is outside.
- A man is sitting.
- The man is cooking.
- There is a man outside.
- Someone likes to get comments from readers of a paper.
datasets:
- wilsonmarciliojr/all-nli-hard-negatives
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
model-index:
- name: SentenceTransformer based on distilbert/distilroberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 768
type: sts-dev-768
metrics:
- type: pearson_cosine
value: 0.8448050528277519
name: Pearson Cosine
- type: spearman_cosine
value: 0.8425114342467096
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8443340435616665
name: Pearson Cosine
- type: spearman_cosine
value: 0.8424246149906882
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8398585653457709
name: Pearson Cosine
- type: spearman_cosine
value: 0.8394326567363602
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 64
type: sts-dev-64
metrics:
- type: pearson_cosine
value: 0.8186432134694419
name: Pearson Cosine
- type: spearman_cosine
value: 0.824920283924075
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 2
type: sts-dev-2
metrics:
- type: pearson_cosine
value: 0.31076537899198964
name: Pearson Cosine
- type: spearman_cosine
value: 0.43799838040639144
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 768
type: sts-test-768
metrics:
- type: pearson_cosine
value: 0.7968692094438083
name: Pearson Cosine
- type: spearman_cosine
value: 0.7943425563476334
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 512
type: sts-test-512
metrics:
- type: pearson_cosine
value: 0.7962633289799607
name: Pearson Cosine
- type: spearman_cosine
value: 0.7950797196573206
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 256
type: sts-test-256
metrics:
- type: pearson_cosine
value: 0.791735022648229
name: Pearson Cosine
- type: spearman_cosine
value: 0.793735329627968
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 64
type: sts-test-64
metrics:
- type: pearson_cosine
value: 0.7759018212998193
name: Pearson Cosine
- type: spearman_cosine
value: 0.7829995178838347
name: Spearman Cosine
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test 2
type: sts-test-2
metrics:
- type: pearson_cosine
value: 0.302599964854653
name: Pearson Cosine
- type: spearman_cosine
value: 0.3978550098767958
name: Spearman Cosine
SentenceTransformer based on distilbert/distilroberta-base
This is a sentence-transformers model finetuned from distilbert/distilroberta-base on the all-nli-hard-negatives dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilroberta-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("wilsonmarciliojr/matryoshka-embed-b16")
sentences = [
'A man reading the paper at a cafe.',
'A man starring at a piece of paper.',
'A man is sitting.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Semantic Similarity
Metric |
sts-dev-768 |
sts-test-768 |
pearson_cosine |
0.8448 |
0.7969 |
spearman_cosine |
0.8425 |
0.7943 |
Semantic Similarity
Metric |
sts-dev-512 |
sts-test-512 |
pearson_cosine |
0.8443 |
0.7963 |
spearman_cosine |
0.8424 |
0.7951 |
Semantic Similarity
Metric |
sts-dev-256 |
sts-test-256 |
pearson_cosine |
0.8399 |
0.7917 |
spearman_cosine |
0.8394 |
0.7937 |
Semantic Similarity
Metric |
sts-dev-64 |
sts-test-64 |
pearson_cosine |
0.8186 |
0.7759 |
spearman_cosine |
0.8249 |
0.783 |
Semantic Similarity
Metric |
sts-dev-2 |
sts-test-2 |
pearson_cosine |
0.3108 |
0.3026 |
spearman_cosine |
0.438 |
0.3979 |
Training Details
Training Dataset
all-nli-hard-negatives
- Dataset: all-nli-hard-negatives at 9e4fbfd
- Size: 200,266 training samples
- Columns:
anchor
, positive
, negative_1
, negative_2
, negative_3
, negative_4
, and negative_5
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
type |
string |
string |
string |
string |
string |
string |
string |
details |
- min: 7 tokens
- mean: 15.96 tokens
- max: 50 tokens
|
- min: 4 tokens
- mean: 10.29 tokens
- max: 22 tokens
|
- min: 4 tokens
- mean: 9.31 tokens
- max: 24 tokens
|
- min: 4 tokens
- mean: 9.21 tokens
- max: 24 tokens
|
- min: 4 tokens
- mean: 9.16 tokens
- max: 24 tokens
|
- min: 4 tokens
- mean: 9.14 tokens
- max: 22 tokens
|
- min: 4 tokens
- mean: 9.34 tokens
- max: 27 tokens
|
- Samples:
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
An older man is drinking orange juice at a restaurant. |
A man is drinking juice. |
A man seated at a restaurant. |
The older man is making food. |
the guy in the orange shirt has food in front of him |
An elderly person is being served food |
A man wears an orange shirt. |
A man with blond-hair, and a brown shirt drinking out of a public water fountain. |
A blond man drinking water from a fountain. |
Man having a drink. |
A man is playing in the fountain. |
A man is drinking something. |
The water fountain is wet. |
This man is wet |
Two women, holding food carryout containers, hug. |
Two women hug each other. |
The two woman are holding their arms |
Both women have things in their hands. |
Two woman standing near each other while one of them holds an item. |
Two women carry bags |
Two people give each other a hug. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
64,
2
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
all-nli-hard-negatives
- Dataset: all-nli-hard-negatives at 9e4fbfd
- Size: 6,494 evaluation samples
- Columns:
anchor
, positive
, negative_1
, negative_2
, negative_3
, negative_4
, and negative_5
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
type |
string |
string |
string |
string |
string |
string |
string |
details |
- min: 6 tokens
- mean: 17.84 tokens
- max: 66 tokens
|
- min: 4 tokens
- mean: 9.91 tokens
- max: 29 tokens
|
- min: 4 tokens
- mean: 9.22 tokens
- max: 27 tokens
|
- min: 5 tokens
- mean: 9.38 tokens
- max: 25 tokens
|
- min: 4 tokens
- mean: 9.28 tokens
- max: 29 tokens
|
- min: 4 tokens
- mean: 9.35 tokens
- max: 41 tokens
|
- min: 4 tokens
- mean: 9.54 tokens
- max: 41 tokens
|
- Samples:
anchor |
positive |
negative_1 |
negative_2 |
negative_3 |
negative_4 |
negative_5 |
Two women are embracing while holding to go packages. |
Two woman are holding packages. |
A group of women with flowers. |
There are women relaxing. |
Women are holding a flag |
A woman is holding one young children with another standing next to her |
An old woman is carrying two pails. |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
Two kids in numbered jerseys wash their hands. |
Children are walking. |
THe children are playing. |
Two kids are playing outside. |
The people have clothes on. |
Children are playing a game |
A man selling donuts to a customer during a world exhibition event held in the city of Angeles |
A man selling donuts to a customer. |
A man is giving a presentation. |
Goods and Services are sold by undercover agents.. |
It is called Service Merchandise here. |
A street vendor is outside. |
I'm happy that I don't work in a store. |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
64,
2
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
num_train_epochs
: 1
warmup_ratio
: 0.1
fp16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
hub_revision
: None
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
liger_kernel_config
: None
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
router_mapping
: {}
learning_rate_mapping
: {}
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
sts-dev-768_spearman_cosine |
sts-dev-512_spearman_cosine |
sts-dev-256_spearman_cosine |
sts-dev-64_spearman_cosine |
sts-dev-2_spearman_cosine |
sts-test-768_spearman_cosine |
sts-test-512_spearman_cosine |
sts-test-256_spearman_cosine |
sts-test-64_spearman_cosine |
sts-test-2_spearman_cosine |
0.0399 |
500 |
9.7558 |
5.4971 |
0.8366 |
0.8394 |
0.8364 |
0.8116 |
0.3516 |
- |
- |
- |
- |
- |
0.0799 |
1000 |
5.8126 |
5.3466 |
0.8265 |
0.8262 |
0.8221 |
0.7994 |
0.3604 |
- |
- |
- |
- |
- |
0.1198 |
1500 |
5.6179 |
5.3155 |
0.8365 |
0.8342 |
0.8297 |
0.8074 |
0.3820 |
- |
- |
- |
- |
- |
0.1598 |
2000 |
5.4337 |
5.0697 |
0.8392 |
0.8383 |
0.8347 |
0.8125 |
0.4098 |
- |
- |
- |
- |
- |
0.1997 |
2500 |
5.2708 |
5.1591 |
0.8320 |
0.8296 |
0.8259 |
0.8051 |
0.3725 |
- |
- |
- |
- |
- |
0.2397 |
3000 |
5.2173 |
5.1042 |
0.8300 |
0.8291 |
0.8255 |
0.8044 |
0.3829 |
- |
- |
- |
- |
- |
0.2796 |
3500 |
5.0789 |
4.9034 |
0.8299 |
0.8277 |
0.8231 |
0.7996 |
0.3710 |
- |
- |
- |
- |
- |
0.3196 |
4000 |
5.1056 |
4.7930 |
0.8419 |
0.8415 |
0.8372 |
0.8162 |
0.4059 |
- |
- |
- |
- |
- |
0.3595 |
4500 |
4.9763 |
4.8291 |
0.8422 |
0.8406 |
0.8355 |
0.8159 |
0.3812 |
- |
- |
- |
- |
- |
0.3995 |
5000 |
4.9729 |
4.9692 |
0.8452 |
0.8435 |
0.8405 |
0.8238 |
0.4114 |
- |
- |
- |
- |
- |
0.4394 |
5500 |
4.7542 |
4.9973 |
0.8394 |
0.8387 |
0.8357 |
0.8190 |
0.3756 |
- |
- |
- |
- |
- |
0.4793 |
6000 |
4.7886 |
4.7710 |
0.8475 |
0.8475 |
0.8453 |
0.8285 |
0.4099 |
- |
- |
- |
- |
- |
0.5193 |
6500 |
4.7406 |
4.6588 |
0.8417 |
0.8415 |
0.8385 |
0.8232 |
0.4347 |
- |
- |
- |
- |
- |
0.5592 |
7000 |
4.7258 |
4.7451 |
0.8465 |
0.8460 |
0.8436 |
0.8249 |
0.4287 |
- |
- |
- |
- |
- |
0.5992 |
7500 |
4.5991 |
4.7196 |
0.8396 |
0.8386 |
0.8357 |
0.8207 |
0.4000 |
- |
- |
- |
- |
- |
0.6391 |
8000 |
4.5976 |
4.6225 |
0.8416 |
0.8409 |
0.8369 |
0.8183 |
0.4153 |
- |
- |
- |
- |
- |
0.6791 |
8500 |
4.5607 |
4.6760 |
0.8407 |
0.8412 |
0.8372 |
0.8208 |
0.4317 |
- |
- |
- |
- |
- |
0.7190 |
9000 |
4.5406 |
4.6796 |
0.8399 |
0.8395 |
0.8359 |
0.8197 |
0.4321 |
- |
- |
- |
- |
- |
0.7590 |
9500 |
4.5464 |
4.5882 |
0.8395 |
0.8395 |
0.8366 |
0.8205 |
0.4305 |
- |
- |
- |
- |
- |
0.7989 |
10000 |
4.4328 |
4.5758 |
0.8427 |
0.8426 |
0.8400 |
0.8245 |
0.4210 |
- |
- |
- |
- |
- |
0.8389 |
10500 |
4.495 |
4.5487 |
0.8402 |
0.8402 |
0.8367 |
0.8214 |
0.4146 |
- |
- |
- |
- |
- |
0.8788 |
11000 |
4.392 |
4.5094 |
0.8420 |
0.8419 |
0.8390 |
0.8244 |
0.4408 |
- |
- |
- |
- |
- |
0.9188 |
11500 |
4.4206 |
4.4939 |
0.8431 |
0.8437 |
0.8403 |
0.8266 |
0.4411 |
- |
- |
- |
- |
- |
0.9587 |
12000 |
4.3311 |
4.4776 |
0.8415 |
0.8413 |
0.8384 |
0.8236 |
0.4378 |
- |
- |
- |
- |
- |
0.9986 |
12500 |
4.3707 |
4.4892 |
0.8425 |
0.8424 |
0.8394 |
0.8249 |
0.4380 |
- |
- |
- |
- |
- |
-1 |
-1 |
- |
- |
- |
- |
- |
- |
- |
0.7943 |
0.7951 |
0.7937 |
0.7830 |
0.3979 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 5.0.0
- Transformers: 4.53.1
- PyTorch: 2.7.1+cu126
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}