Slovenian - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Slovenian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.326x | 3.33 | 0.6705% | 1,060,027 |
| 16k | 3.677x | 3.68 | 0.7414% | 958,786 |
| 32k | 4.017x | 4.02 | 0.8100% | 877,496 |
| 64k | 4.308x π | 4.31 | 0.8686% | 818,369 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Tinja je lahko: Tinja Donja (Bosna in Hercegovina) Tinja Gornja (Bosna in Herceg...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βtin ja βje βlahko : βtin ja βdo nja β( ... (+27 more) |
37 |
| 16k | βtin ja βje βlahko : βtin ja βdonja β( bosna ... (+22 more) |
32 |
| 32k | βtin ja βje βlahko : βtin ja βdonja β( bosna ... (+21 more) |
31 |
| 64k | βtin ja βje βlahko : βtin ja βdonja β( bosna ... (+21 more) |
31 |
Sample 2: Ε krabΔeva ulica je lahko naziv veΔ ulic: Ε krabΔeva ulica, Ljubljana Ε krabΔeva ul...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΕ‘ kra b Δeva βulica βje βlahko βnaziv βveΔ βu ... (+17 more) |
27 |
| 16k | βΕ‘ kra b Δeva βulica βje βlahko βnaziv βveΔ βulic ... (+16 more) |
26 |
| 32k | βΕ‘kra b Δeva βulica βje βlahko βnaziv βveΔ βulic : ... (+13 more) |
23 |
| 64k | βΕ‘krab Δeva βulica βje βlahko βnaziv βveΔ βulic : βΕ‘krab ... (+10 more) |
20 |
Sample 3: KreΕ‘evo je lahko: KreΕ‘evo, Bosna in Hercegovina KreΕ‘evo, HrvaΕ‘ka glej tudi KruΕ‘e...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βkre Ε‘e vo βje βlahko : βkre Ε‘e vo , ... (+13 more) |
23 |
| 16k | βkre Ε‘e vo βje βlahko : βkre Ε‘e vo , ... (+13 more) |
23 |
| 32k | βkre Ε‘evo βje βlahko : βkre Ε‘evo , βbosna βin ... (+9 more) |
19 |
| 64k | βkre Ε‘evo βje βlahko : βkre Ε‘evo , βbosna βin ... (+9 more) |
19 |
Key Findings
- Best Compression: 64k achieves 4.308x compression
- Lowest UNK Rate: 8k with 0.6705% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 230,065 | 17.81 | 1,580,681 | 8.6% | 18.2% |
| 2-gram | Subword | 307 π | 8.26 | 19,173 | 64.1% | 99.0% |
| 3-gram | Word | 628,655 | 19.26 | 2,417,119 | 4.1% | 11.2% |
| 3-gram | Subword | 3,012 | 11.56 | 154,341 | 21.4% | 65.5% |
| 4-gram | Word | 1,262,619 | 20.27 | 3,613,803 | 3.4% | 8.8% |
| 4-gram | Subword | 20,514 | 14.32 | 898,859 | 9.3% | 30.9% |
| 5-gram | Word | 764,287 | 19.54 | 2,274,837 | 4.9% | 11.6% |
| 5-gram | Subword | 99,057 | 16.60 | 3,187,233 | 4.7% | 16.9% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | je bil |
242,649 |
| 2 | se je |
241,005 |
| 3 | ki je |
174,450 |
| 4 | je bila |
164,565 |
| 5 | ki so |
110,725 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | glej tudi seznam |
56,792 |
| 2 | pr n Ε‘t |
34,003 |
| 3 | ki ga je |
25,570 |
| 4 | sklici zunanje povezave |
21,261 |
| 5 | opombe glej tudi |
21,007 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | glej tudi seznam naselij |
20,688 |
| 2 | in opombe glej tudi |
20,455 |
| 3 | opombe glej tudi seznam |
19,924 |
| 4 | viri in opombe glej |
16,449 |
| 5 | ki upravno spada pod |
15,090 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | in opombe glej tudi seznam |
19,642 |
| 2 | opombe glej tudi seznam naselij |
16,702 |
| 3 | viri in opombe glej tudi |
16,449 |
| 4 | glej tudi seznam naselij v |
10,861 |
| 5 | glej tudi seznam naselij na |
9,825 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a _ |
11,379,031 |
| 2 | e _ |
9,711,848 |
| 3 | i _ |
7,963,628 |
| 4 | _ p |
7,248,467 |
| 5 | _ s |
7,019,681 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | j e _ |
4,141,312 |
| 2 | _ j e |
2,970,998 |
| 3 | _ p o |
2,883,740 |
| 4 | _ p r |
2,720,662 |
| 5 | _ n a |
2,547,716 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ j e _ |
2,761,955 |
| 2 | _ i n _ |
2,026,152 |
| 3 | _ n a _ |
1,018,082 |
| 4 | _ p r e |
991,101 |
| 5 | e g a _ |
882,400 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a _ j e _ |
682,064 |
| 2 | , _ k i _ |
656,040 |
| 3 | _ l e t a |
563,205 |
| 4 | _ j e _ b |
529,211 |
| 5 | j e _ b i |
504,001 |
Key Findings
- Best Perplexity: 2-gram (subword) with 307
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~17% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 1.0363 | 2.051 | 12.35 | 1,898,880 | 0.0% |
| 1 | Subword | 0.7016 | 1.626 | 5.31 | 18,900 | 29.8% |
| 2 | Word | 0.3404 | 1.266 | 2.08 | 23,427,544 | 66.0% |
| 2 | Subword | 0.5506 | 1.465 | 3.88 | 100,242 | 44.9% |
| 3 | Word | 0.1238 | 1.090 | 1.26 | 48,734,695 | 87.6% |
| 3 | Subword | 0.7077 | 1.633 | 4.16 | 388,929 | 29.2% |
| 4 | Word | 0.0464 π | 1.033 | 1.08 | 61,326,075 | 95.4% |
| 4 | Subword | 0.7050 | 1.630 | 3.60 | 1,617,081 | 29.5% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
je leta drugi strani gore budizma na sinaju pa mohor bogataj obrobje lokovΕ‘ke planote ima vin nkoma kmalu zatem poslala s katero ima toplo hrano kristersson kandiderar till holger in longv kombinaciji piracetama ni usmerjen v oΔetovi smrti ljubljane upravno spada pod konradom auffenstei...
Context Size 2:
je bil dirkalnik konkurenΔen in ickx vztrajala da cape financira svoje zadeve anonymous 24 januar go...se je letalo prehitelo ekspresni vlak za florido glej tudi seznam francoskih skladateljev g rafael g...ki je prouΔeval razmerja med svojo razgradnjo produktov oksalna kislina je zelo jezen ker je imelo z...
Context Size 3:
glej tudi seznam naselij v Δrni gori ki upravno spada pod obΔino Δoka slednja pa je del Ε‘umadijskegapr n Ε‘t Δi leta 357 pr n Ε‘t posvetili cesarju avgustu sklici viri viri ljudstvaki ga je po podatkih statistiΔnega urada republike slovenije na pobudo prekmurskega druΕ‘tva general ...
Context Size 4:
glej tudi seznam naselij v srbiji raΕ‘kega upravnega okrajain opombe glej tudi Δini slovenske vojske Δini ustanovljeni leta Δini ukinjeni letaopombe glej tudi seznam naselij v srbiji zlatiborskega upravnega okraja
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_dedna_bhe_ka._(ahodnizart;_go_peΕ‘tske'ijem_z_zo
Context Size 2:
a_gle_naΔi_zerevae_vrΕ‘Δe,_cepubreki_pozem_ske_merib
Context Size 3:
je_hoΔenisoke_dogs_je_tren._podatki__potekajo_zgodklon
Context Size 4:
_je_po_znan_pedagog_in_renesisteinhart_na_polkovniΕ‘kih_od
Key Findings
- Best Predictability: Context-4 (word) with 95.4% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,617,081 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 897,122 |
| Total Tokens | 72,710,721 |
| Mean Frequency | 81.05 |
| Median Frequency | 4 |
| Frequency Std Dev | 4937.29 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | je | 2,786,159 |
| 2 | in | 2,040,383 |
| 3 | v | 2,029,005 |
| 4 | na | 1,031,510 |
| 5 | so | 822,699 |
| 6 | se | 719,502 |
| 7 | ki | 679,959 |
| 8 | za | 672,987 |
| 9 | leta | 518,963 |
| 10 | z | 469,417 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | landesgericht | 2 |
| 2 | sΓΊkup | 2 |
| 3 | rozec | 2 |
| 4 | malkolma | 2 |
| 5 | sumate | 2 |
| 6 | chamlanga | 2 |
| 7 | presmuΔala | 2 |
| 8 | luzejem | 2 |
| 9 | edrika | 2 |
| 10 | sigefertovo | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.8973 |
| RΒ² (Goodness of Fit) | 0.998517 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 30.5% |
| Top 1,000 | 47.9% |
| Top 5,000 | 64.2% |
| Top 10,000 | 71.7% |
Key Findings
- Zipf Compliance: RΒ²=0.9985 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 30.5% of corpus
- Long Tail: 887,122 words needed for remaining 28.3% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7907 | 0.3497 | N/A | N/A |
| mono_64d | 64 | 0.7532 | 0.2937 | N/A | N/A |
| mono_128d | 128 | 0.6831 | 0.2333 | N/A | N/A |
| aligned_32d | 32 | 0.7907 π | 0.3571 | 0.3140 | 0.6660 |
| aligned_64d | 64 | 0.7532 | 0.2862 | 0.5440 | 0.8920 |
| aligned_128d | 128 | 0.6831 | 0.2351 | 0.6300 | 0.8880 |
Key Findings
- Best Isotropy: aligned_32d with 0.7907 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2925. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 63.0% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | -0.314 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-s |
samoporjavitev, severvzhodni, svilne |
-a |
argonne, aleutskega, aiya |
-ma |
mathur, mashel, maerua |
-m |
mowbed, migracijah, melodramatiΔne |
-k |
kickl, kaΕ‘kega, koknese |
-p |
picramniales, ptujskega, picinus |
-b |
brelich, berruguete, bandai |
-t |
tragedov, teus, travmatsko |
Productive Suffixes
| Suffix | Examples |
|---|---|
-a |
zimunya, ptujskega, churchosrednja |
-i |
zaposliti, gallicani, rurikoviΔi |
-e |
berruguete, melodramatiΔne, svilne |
-o |
porfiriato, travmatsko, fajdo |
-m |
leviΔarskem, joΕΎefom, utesnjenem |
-ga |
ptujskega, igmanskega, petrarkovega |
-s |
picramniales, chlorotis, teus |
-ih |
znotrajjetrnih, boucherjevih, pozitivistiΔnih |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
skeg |
2.01x | 178 contexts | skega, jskega, muskeg |
enje |
1.57x | 357 contexts | genje, enjeu, ΕΎenje |
ovez |
2.40x | 45 contexts | povez, poveza, povezi |
orab |
1.90x | 106 contexts | korab, vorab, porab |
iΔni |
1.47x | 356 contexts | liΔni, viΔni, niΔni |
ijsk |
1.34x | 565 contexts | bijsk, bijsku, krijska |
ranj |
1.42x | 366 contexts | vranj, ranji, kranj |
tiΔn |
1.43x | 329 contexts | tiΔnik, stiΔni, atiΔne |
rΕΎav |
2.01x | 54 contexts | drΕΎav, drΕΎavy, drΕΎavi |
acij |
1.37x | 302 contexts | lacij, acija, tacij |
nske |
1.34x | 343 contexts | ΓΈnske, unske, sanske |
avlj |
1.33x | 320 contexts | javlja, lavlje, kavlja |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-p |
-a |
171 words | pumapunkuja, pahmutova |
-s |
-a |
133 words | soteΕ‘ka, suvalΕ‘Δizna |
-p |
-i |
120 words | prostorninskimi, prisegami |
-p |
-e |
100 words | pionirke, priimkie |
-k |
-a |
97 words | kolegialnega, khandrika |
-s |
-i |
90 words | sampi, stavkati |
-a |
-a |
89 words | alkalna, alkibiadesa |
-p |
-o |
84 words | postkolonialno, pljeΕ‘ivico |
-b |
-a |
83 words | brahmsa, benna |
-s |
-e |
76 words | stradanje, seksualizirane |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| desetstrane | desetstr-a-ne |
7.5 | a |
| globalizirano | globalizir-a-no |
7.5 | a |
| craigallian | craigalli-a-n |
7.5 | a |
| Ε‘ahrastani | Ε‘ahrast-a-ni |
7.5 | a |
| suΕ‘ilnicah | suΕ‘ilnic-a-h |
7.5 | a |
| sirakuzah | sirakuz-a-h |
7.5 | a |
| grdoselski | grdosel-s-ki |
7.5 | s |
| spremenljivkama | spremenljivka-m-a |
7.5 | m |
| krogliΔar | krogliΔ-a-r |
7.5 | a |
| skristaliziral | skristalizir-a-l |
7.5 | a |
| pritajeno | pritaj-e-no |
7.5 | e |
| izhodiΕ‘Δnega | izhodiΕ‘Δ-ne-ga |
7.5 | ne |
| lastovsko | lastov-s-ko |
7.5 | s |
| orbeliani | orbeli-a-ni |
7.5 | a |
| igralkodallas | igralkodall-a-s |
7.5 | a |
6.6 Linguistic Interpretation
Automated Insight: The language Slovenian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.31x) |
| N-gram | 2-gram | Lowest perplexity (307) |
| Markov | Context-4 | Highest predictability (95.4%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-17 08:23:12



















