SetFit with nomic-ai/nomic-embed-text-v1.5

This is a SetFit model that can be used for Text Classification. This SetFit model uses nomic-ai/nomic-embed-text-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Add a corporate presentation background'
  • 'Insert a modern icon set for the design'
  • 'Add a mountain landscape background to the page'
1
  • 'Show me some background options for my design'
  • 'I need some icon suggestions for this layout'
  • 'Find me some shape options for this design'
2
  • 'Add a social media handle'
  • 'Insert a promotional message'
  • "Add a heading that says 'Welcome'"
3
  • 'Align the footer elements'
  • 'Align everything to the bottom'
  • 'Center the logo and title'
4
  • 'Make the image slide from left'
  • 'Make the image bounce in'
  • 'Add a fade-in animation to the text'
5
  • 'Make the page rotate in'
  • 'Add a zoom-out effect to the entire page'
  • 'Make everything fade in gradually'
6
  • 'Change the color of the car to red'
  • 'Remove the unwanted text overlay'
  • 'Remove the sunglasses and add regular glasses'
7
  • 'Remove the unnecessary decoration'
  • 'Remove the temporary shape'
  • 'Delete the broken image'
8
  • 'How do I group elements together?'
  • 'What text formatting options are there?'
  • 'What are the available filter effects?'
9
  • 'Place the decorations around the title'
  • 'Distribute the text around the focal point'
  • 'Arrange the icons in a circle around the logo'
10
  • 'Make a copy for editing'
  • 'Create a similar page'
  • 'Make a backup of this page'
11
  • 'Copy the image and make it smaller'
  • 'Duplicate the text and change the color'
  • 'Duplicate the logo and flip it'
12
  • 'Copy the icon to the next slide'
  • 'Duplicate the button to page 5'
  • 'Copy the text to the last page'
13
  • 'Fix the typographic errors'
  • 'Fix the letter spacing'
  • 'Improve the paragraph spacing'
14
  • 'Mirror the logo vertically'
  • 'Mirror the icon horizontally'
  • 'Flip the image right to left'
15
  • 'Make an image of a cozy coffee shop'
  • 'Make an image of a modern office space'
  • 'Make an image of a magical forest'
16
  • 'Create a card for a birthday party'
  • 'Create a dark-themed social media post for tech news'
  • 'Generate an Instagram post for a birthday'
17
  • 'Group the navigation elements'
  • 'Group the header elements'
  • 'Group the decorative elements'
18
  • 'Move the element to the bottom left'
  • 'Move the text to the middle'
  • 'Position the logo in the corner'
19
  • 'Apply a cool blue filter'
  • 'Add a dreamy effect'
  • 'Apply a cinematic filter'
20
  • 'Find me some background images'
  • 'Suggest some visual elements'
  • 'Find me overlay effects'
21
  • 'Redo the filter effect'
  • 'Bring back the deleted element'
  • 'Bring back the deleted shape'
22
  • 'Make the object stand alone'
  • 'Remove the background from the icon'
  • 'Remove the background from the photo'
23
  • 'Remove the distracting element'
  • 'Delete the watermark'
  • 'Remove the old building'
24
  • 'Replace the image with a better one'
  • 'Change the background to a different scene'
  • 'Replace the overlay with a gradient'
25
  • 'Replace the menu items'
  • 'Replace the title'
  • 'Change the button text'
26
  • 'Restore the original brightness'
  • 'Reset the image to its initial state'
  • 'Restore the original colors'
27
  • 'Reduce the shape size'
  • 'Increase the image size'
  • 'Reduce the button size'
28
  • 'Make the page portrait orientation'
  • 'Change to business card size'
  • 'Make the page wider'
29
  • 'Rotate the element 60 degrees'
  • 'Rotate the image clockwise'
  • 'Turn the logo 270 degrees'
30
  • 'Scatter the flowers around the border'
  • 'Distribute the shapes randomly'
  • 'Scatter the stars around the title'
31
  • 'Select the main image'
  • 'Choose the heading text'
  • 'Select the logo element'
32
  • 'Make the background transparent'
  • 'Change to a neutral background'
  • 'Change to a light gray background'
33
  • 'Change the blend mode to exclusion'
  • 'Set the blend mode to soft light'
  • 'Set the blend mode to darken'
34
  • 'Add a depth of field blur'
  • 'Blur the entire image'
  • 'Add a motion blur effect'
35
  • 'Change the border width'
  • 'Add a colored border'
  • 'Add a gradient border'
36
  • 'Brighten the dark areas'
  • 'Make the photo more illuminated'
  • 'Make the image more brilliant'
37
  • 'Put the decoration behind'
  • 'Move the icon to the top'
  • 'Put the shape behind the text'
38
  • 'Make the image more striking'
  • 'Enhance the contrast'
  • 'Increase the visual clarity'
39
  • 'Make the image elliptical'
  • 'Make the image circular'
  • 'Make the image diamond-shaped'
40
  • 'Add a colored drop shadow'
  • 'Create a realistic shadow'
  • 'Create a soft drop shadow'
41
  • 'Fill the shape with orange'
  • 'Change the color to teal'
  • 'Fill the element with brown'
42
  • 'Make the subtitle larger'
  • 'Make the description smaller'
  • 'Make the label smaller'
43
  • 'Make the text italic only'
  • 'Make the text emphasized'
  • 'Make the text bold only'
44
  • 'Use a playful font'
  • 'Use a professional font'
  • 'Change to a modern sans-serif font'
45
  • 'Increase the highlight clarity'
  • 'Increase the highlight intensity'
  • 'Enhance the bright spots'
46
  • 'Make the photo cover the background'
  • 'Set the picture as full background'
  • 'Make the photo cover the entire page'
47
  • 'Spread out the letters in the heading'
  • 'Make the letters closer together in the text'
  • 'Tighten the letter spacing in the caption'
48
  • 'Add more line height'
  • 'Make the text more readable'
  • 'Reduce the line height'
49
  • 'Make the text more transparent'
  • 'Reduce the opacity of the overlay'
  • 'Make the element semi-transparent'
50
  • 'Make the sections closer'
  • 'Make the paragraphs closer together'
  • 'Reduce the paragraph spacing'
51
  • 'Make the colors more vivid'
  • 'Increase the color intensity'
  • 'Increase the color richness'
52
  • 'Darken the shadow regions'
  • 'Darken the shadow tones'
  • 'Enhance the shadow details'
53
  • 'Make the details more sharp'
  • 'Increase the image resolution'
  • 'Increase the detail sharpness'
54
  • 'Center the title text'
  • 'Center the logo text'
  • 'Justify the paragraph text'
55
  • 'Create a text container'
  • 'Create a border around the text'
  • 'Add a gradient background to the text'
56
  • 'Create curved text layout'
  • 'Make the text flow in an arc'
  • 'Make the text follow a path'
57
  • 'Make the text into bullet points'
  • 'Make the text into a list with bullets'
  • 'Create an organized list from the text'
58
  • 'Create a shadow behind the heading'
  • 'Add a dramatic text shadow'
  • 'Add a soft glow effect'
59
  • 'Increase the warm color cast'
  • 'Make the image more yellow'
  • 'Add warm undertones to the photo'
60
  • 'Open the image upload tool'
  • 'Show me the file browser'
  • 'Open the upload window'
61
  • 'Go back to the previous state'
  • 'Undo the text edit'
  • 'Revert the color change'
62
  • 'Ungroup the selected items'
  • 'Break up the grouped objects'
  • 'Ungroup the merged elements'

Evaluation

Metrics

Label Accuracy
all 0.6240

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Position the text at the top")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 5.2243 12
Label Training Sample Count
0 15
1 15
2 15
3 15
4 15
5 15
6 15
7 15
8 15
9 15
10 15
11 15
12 15
13 15
14 15
15 15
16 15
17 15
18 15
19 15
20 15
21 15
22 15
23 15
24 15
25 15
26 15
27 15
28 15
29 15
30 15
31 15
32 15
33 15
34 15
35 15
36 15
37 15
38 15
39 15
40 15
41 15
42 15
43 15
44 15
45 15
46 15
47 15
48 15
49 15
50 15
51 15
52 15
53 15
54 15
55 15
56 15
57 15
58 15
59 15
60 15
61 15
62 15

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: True
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0001 1 0.1774 -
0.0036 50 0.1629 -
0.0073 100 0.1464 -
0.0109 150 0.1147 -
0.0146 200 0.0798 -
0.0182 250 0.0552 -
0.0218 300 0.0391 -
0.0255 350 0.0271 -
0.0291 400 0.0272 -
0.0328 450 0.018 -
0.0364 500 0.015 -
0.0400 550 0.0136 -
0.0437 600 0.012 -
0.0473 650 0.0105 -
0.0510 700 0.0094 -
0.0546 750 0.0087 -
0.0583 800 0.0061 -
0.0619 850 0.0078 -
0.0655 900 0.0068 -
0.0692 950 0.0066 -
0.0728 1000 0.0053 -
0.0765 1050 0.0057 -
0.0801 1100 0.0065 -
0.0837 1150 0.0054 -
0.0874 1200 0.0058 -
0.0910 1250 0.006 -
0.0947 1300 0.0048 -
0.0983 1350 0.0038 -
0.1019 1400 0.0034 -
0.1056 1450 0.0037 -
0.1092 1500 0.006 -
0.1129 1550 0.0047 -
0.1165 1600 0.0042 -
0.1201 1650 0.0038 -
0.1238 1700 0.0036 -
0.1274 1750 0.0049 -
0.1311 1800 0.0019 -
0.1347 1850 0.003 -
0.1384 1900 0.003 -
0.1420 1950 0.0024 -
0.1456 2000 0.0023 -
0.1493 2050 0.002 -
0.1529 2100 0.0033 -
0.1566 2150 0.0032 -
0.1602 2200 0.0048 -
0.1638 2250 0.004 -
0.1675 2300 0.0032 -
0.1711 2350 0.0033 -
0.1748 2400 0.0036 -
0.1784 2450 0.0031 -
0.1820 2500 0.0024 -
0.1857 2550 0.0016 -
0.1893 2600 0.0024 -
0.1930 2650 0.0034 -
0.1966 2700 0.0022 -
0.2002 2750 0.0021 -
0.2039 2800 0.0022 -
0.2075 2850 0.0012 -
0.2112 2900 0.0022 -
0.2148 2950 0.001 -
0.2185 3000 0.0007 -
0.2221 3050 0.0011 -
0.2257 3100 0.0008 -
0.2294 3150 0.0008 -
0.2330 3200 0.0016 -
0.2367 3250 0.0026 -
0.2403 3300 0.0018 -
0.2439 3350 0.0021 -
0.2476 3400 0.001 -
0.2512 3450 0.002 -
0.2549 3500 0.0017 -
0.2585 3550 0.0011 -
0.2621 3600 0.0007 -
0.2658 3650 0.0019 -
0.2694 3700 0.0023 -
0.2731 3750 0.0022 -
0.2767 3800 0.0015 -
0.2803 3850 0.0016 -
0.2840 3900 0.0017 -
0.2876 3950 0.0041 -
0.2913 4000 0.0028 -
0.2949 4050 0.0032 -
0.2986 4100 0.004 -
0.3022 4150 0.0025 -
0.3058 4200 0.0026 -
0.3095 4250 0.0024 -
0.3131 4300 0.0015 -
0.3168 4350 0.0013 -
0.3204 4400 0.0026 -
0.3240 4450 0.0017 -
0.3277 4500 0.0015 -
0.3313 4550 0.0013 -
0.3350 4600 0.0012 -
0.3386 4650 0.0009 -
0.3422 4700 0.0008 -
0.3459 4750 0.0009 -
0.3495 4800 0.0005 -
0.3532 4850 0.0005 -
0.3568 4900 0.001 -
0.3604 4950 0.0005 -
0.3641 5000 0.0003 -
0.3677 5050 0.0011 -
0.3714 5100 0.0006 -
0.3750 5150 0.0007 -
0.3786 5200 0.0006 -
0.3823 5250 0.0007 -
0.3859 5300 0.0005 -
0.3896 5350 0.001 -
0.3932 5400 0.0006 -
0.3969 5450 0.0011 -
0.4005 5500 0.0009 -
0.4041 5550 0.001 -
0.4078 5600 0.001 -
0.4114 5650 0.0011 -
0.4151 5700 0.0007 -
0.4187 5750 0.0008 -
0.4223 5800 0.0009 -
0.4260 5850 0.0004 -
0.4296 5900 0.0007 -
0.4333 5950 0.0005 -
0.4369 6000 0.0011 -
0.4405 6050 0.0007 -
0.4442 6100 0.0007 -
0.4478 6150 0.0003 -
0.4515 6200 0.0004 -
0.4551 6250 0.0006 -
0.4587 6300 0.0003 -
0.4624 6350 0.001 -
0.4660 6400 0.0006 -
0.4697 6450 0.0009 -
0.4733 6500 0.0008 -
0.4770 6550 0.0009 -
0.4806 6600 0.0005 -
0.4842 6650 0.0009 -
0.4879 6700 0.0009 -
0.4915 6750 0.0012 -
0.4952 6800 0.0004 -
0.4988 6850 0.0005 -
0.5024 6900 0.0009 -
0.5061 6950 0.0014 -
0.5097 7000 0.0005 -
0.5134 7050 0.0007 -
0.5170 7100 0.0009 -
0.5206 7150 0.0011 -
0.5243 7200 0.001 -
0.5279 7250 0.0021 -
0.5316 7300 0.0015 -
0.5352 7350 0.001 -
0.5388 7400 0.001 -
0.5425 7450 0.0018 -
0.5461 7500 0.0009 -
0.5498 7550 0.0008 -
0.5534 7600 0.0004 -
0.5571 7650 0.0007 -
0.5607 7700 0.0009 -
0.5643 7750 0.0011 -
0.5680 7800 0.0006 -
0.5716 7850 0.0016 -
0.5753 7900 0.0016 -
0.5789 7950 0.0009 -
0.5825 8000 0.0017 -
0.5862 8050 0.0017 -
0.5898 8100 0.001 -
0.5935 8150 0.001 -
0.5971 8200 0.0005 -
0.6007 8250 0.0008 -
0.6044 8300 0.0003 -
0.6080 8350 0.0005 -
0.6117 8400 0.0006 -
0.6153 8450 0.0006 -
0.6189 8500 0.0007 -
0.6226 8550 0.0006 -
0.6262 8600 0.0007 -
0.6299 8650 0.0008 -
0.6335 8700 0.0005 -
0.6372 8750 0.001 -
0.6408 8800 0.0011 -
0.6444 8850 0.0008 -
0.6481 8900 0.0008 -
0.6517 8950 0.0007 -
0.6554 9000 0.0006 -
0.6590 9050 0.0008 -
0.6626 9100 0.0004 -
0.6663 9150 0.0007 -
0.6699 9200 0.0007 -
0.6736 9250 0.0002 -
0.6772 9300 0.0007 -
0.6808 9350 0.0007 -
0.6845 9400 0.0006 -
0.6881 9450 0.0007 -
0.6918 9500 0.0009 -
0.6954 9550 0.0007 -
0.6990 9600 0.0006 -
0.7027 9650 0.0009 -
0.7063 9700 0.0005 -
0.7100 9750 0.0006 -
0.7136 9800 0.001 -
0.7173 9850 0.0004 -
0.7209 9900 0.0006 -
0.7245 9950 0.0006 -
0.7282 10000 0.0003 -
0.7318 10050 0.0009 -
0.7355 10100 0.0006 -
0.7391 10150 0.0011 -
0.7427 10200 0.0008 -
0.7464 10250 0.0006 -
0.7500 10300 0.0008 -
0.7537 10350 0.0006 -
0.7573 10400 0.0005 -
0.7609 10450 0.0008 -
0.7646 10500 0.0007 -
0.7682 10550 0.0005 -
0.7719 10600 0.0007 -
0.7755 10650 0.0011 -
0.7791 10700 0.0011 -
0.7828 10750 0.0008 -
0.7864 10800 0.0003 -
0.7901 10850 0.0006 -
0.7937 10900 0.0009 -
0.7973 10950 0.0006 -
0.8010 11000 0.0008 -
0.8046 11050 0.0005 -
0.8083 11100 0.0014 -
0.8119 11150 0.0007 -
0.8156 11200 0.0004 -
0.8192 11250 0.001 -
0.8228 11300 0.0005 -
0.8265 11350 0.0003 -
0.8301 11400 0.0005 -
0.8338 11450 0.0003 -
0.8374 11500 0.0004 -
0.8410 11550 0.0006 -
0.8447 11600 0.0006 -
0.8483 11650 0.0006 -
0.8520 11700 0.0005 -
0.8556 11750 0.0008 -
0.8592 11800 0.0009 -
0.8629 11850 0.0007 -
0.8665 11900 0.0012 -
0.8702 11950 0.0003 -
0.8738 12000 0.0006 -
0.8774 12050 0.0007 -
0.8811 12100 0.0008 -
0.8847 12150 0.0003 -
0.8884 12200 0.0006 -
0.8920 12250 0.0006 -
0.8957 12300 0.0004 -
0.8993 12350 0.0005 -
0.9029 12400 0.0005 -
0.9066 12450 0.0006 -
0.9102 12500 0.0004 -
0.9139 12550 0.0005 -
0.9175 12600 0.0003 -
0.9211 12650 0.0004 -
0.9248 12700 0.0005 -
0.9284 12750 0.0006 -
0.9321 12800 0.0004 -
0.9357 12850 0.0005 -
0.9393 12900 0.0005 -
0.9430 12950 0.0011 -
0.9466 13000 0.0004 -
0.9503 13050 0.0007 -
0.9539 13100 0.0005 -
0.9575 13150 0.0006 -
0.9612 13200 0.0005 -
0.9648 13250 0.0007 -
0.9685 13300 0.0007 -
0.9721 13350 0.0004 -
0.9758 13400 0.0005 -
0.9794 13450 0.0005 -
0.9830 13500 0.0004 -
0.9867 13550 0.0006 -
0.9903 13600 0.0004 -
0.9940 13650 0.0007 -
0.9976 13700 0.0007 -

Framework Versions

  • Python: 3.12.11
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.54.1
  • PyTorch: 2.7.1
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
671
Safetensors
Model size
137M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for weizhou03/nomic-embed-text-v1.5

Quantized
(17)
this model

Evaluation results