SetFit with nomic-ai/nomic-embed-text-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses nomic-ai/nomic-embed-text-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: nomic-ai/nomic-embed-text-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 63 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.6240 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Position the text at the top")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 5.2243 | 12 |
Label | Training Sample Count |
---|---|
0 | 15 |
1 | 15 |
2 | 15 |
3 | 15 |
4 | 15 |
5 | 15 |
6 | 15 |
7 | 15 |
8 | 15 |
9 | 15 |
10 | 15 |
11 | 15 |
12 | 15 |
13 | 15 |
14 | 15 |
15 | 15 |
16 | 15 |
17 | 15 |
18 | 15 |
19 | 15 |
20 | 15 |
21 | 15 |
22 | 15 |
23 | 15 |
24 | 15 |
25 | 15 |
26 | 15 |
27 | 15 |
28 | 15 |
29 | 15 |
30 | 15 |
31 | 15 |
32 | 15 |
33 | 15 |
34 | 15 |
35 | 15 |
36 | 15 |
37 | 15 |
38 | 15 |
39 | 15 |
40 | 15 |
41 | 15 |
42 | 15 |
43 | 15 |
44 | 15 |
45 | 15 |
46 | 15 |
47 | 15 |
48 | 15 |
49 | 15 |
50 | 15 |
51 | 15 |
52 | 15 |
53 | 15 |
54 | 15 |
55 | 15 |
56 | 15 |
57 | 15 |
58 | 15 |
59 | 15 |
60 | 15 |
61 | 15 |
62 | 15 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0001 | 1 | 0.1774 | - |
0.0036 | 50 | 0.1629 | - |
0.0073 | 100 | 0.1464 | - |
0.0109 | 150 | 0.1147 | - |
0.0146 | 200 | 0.0798 | - |
0.0182 | 250 | 0.0552 | - |
0.0218 | 300 | 0.0391 | - |
0.0255 | 350 | 0.0271 | - |
0.0291 | 400 | 0.0272 | - |
0.0328 | 450 | 0.018 | - |
0.0364 | 500 | 0.015 | - |
0.0400 | 550 | 0.0136 | - |
0.0437 | 600 | 0.012 | - |
0.0473 | 650 | 0.0105 | - |
0.0510 | 700 | 0.0094 | - |
0.0546 | 750 | 0.0087 | - |
0.0583 | 800 | 0.0061 | - |
0.0619 | 850 | 0.0078 | - |
0.0655 | 900 | 0.0068 | - |
0.0692 | 950 | 0.0066 | - |
0.0728 | 1000 | 0.0053 | - |
0.0765 | 1050 | 0.0057 | - |
0.0801 | 1100 | 0.0065 | - |
0.0837 | 1150 | 0.0054 | - |
0.0874 | 1200 | 0.0058 | - |
0.0910 | 1250 | 0.006 | - |
0.0947 | 1300 | 0.0048 | - |
0.0983 | 1350 | 0.0038 | - |
0.1019 | 1400 | 0.0034 | - |
0.1056 | 1450 | 0.0037 | - |
0.1092 | 1500 | 0.006 | - |
0.1129 | 1550 | 0.0047 | - |
0.1165 | 1600 | 0.0042 | - |
0.1201 | 1650 | 0.0038 | - |
0.1238 | 1700 | 0.0036 | - |
0.1274 | 1750 | 0.0049 | - |
0.1311 | 1800 | 0.0019 | - |
0.1347 | 1850 | 0.003 | - |
0.1384 | 1900 | 0.003 | - |
0.1420 | 1950 | 0.0024 | - |
0.1456 | 2000 | 0.0023 | - |
0.1493 | 2050 | 0.002 | - |
0.1529 | 2100 | 0.0033 | - |
0.1566 | 2150 | 0.0032 | - |
0.1602 | 2200 | 0.0048 | - |
0.1638 | 2250 | 0.004 | - |
0.1675 | 2300 | 0.0032 | - |
0.1711 | 2350 | 0.0033 | - |
0.1748 | 2400 | 0.0036 | - |
0.1784 | 2450 | 0.0031 | - |
0.1820 | 2500 | 0.0024 | - |
0.1857 | 2550 | 0.0016 | - |
0.1893 | 2600 | 0.0024 | - |
0.1930 | 2650 | 0.0034 | - |
0.1966 | 2700 | 0.0022 | - |
0.2002 | 2750 | 0.0021 | - |
0.2039 | 2800 | 0.0022 | - |
0.2075 | 2850 | 0.0012 | - |
0.2112 | 2900 | 0.0022 | - |
0.2148 | 2950 | 0.001 | - |
0.2185 | 3000 | 0.0007 | - |
0.2221 | 3050 | 0.0011 | - |
0.2257 | 3100 | 0.0008 | - |
0.2294 | 3150 | 0.0008 | - |
0.2330 | 3200 | 0.0016 | - |
0.2367 | 3250 | 0.0026 | - |
0.2403 | 3300 | 0.0018 | - |
0.2439 | 3350 | 0.0021 | - |
0.2476 | 3400 | 0.001 | - |
0.2512 | 3450 | 0.002 | - |
0.2549 | 3500 | 0.0017 | - |
0.2585 | 3550 | 0.0011 | - |
0.2621 | 3600 | 0.0007 | - |
0.2658 | 3650 | 0.0019 | - |
0.2694 | 3700 | 0.0023 | - |
0.2731 | 3750 | 0.0022 | - |
0.2767 | 3800 | 0.0015 | - |
0.2803 | 3850 | 0.0016 | - |
0.2840 | 3900 | 0.0017 | - |
0.2876 | 3950 | 0.0041 | - |
0.2913 | 4000 | 0.0028 | - |
0.2949 | 4050 | 0.0032 | - |
0.2986 | 4100 | 0.004 | - |
0.3022 | 4150 | 0.0025 | - |
0.3058 | 4200 | 0.0026 | - |
0.3095 | 4250 | 0.0024 | - |
0.3131 | 4300 | 0.0015 | - |
0.3168 | 4350 | 0.0013 | - |
0.3204 | 4400 | 0.0026 | - |
0.3240 | 4450 | 0.0017 | - |
0.3277 | 4500 | 0.0015 | - |
0.3313 | 4550 | 0.0013 | - |
0.3350 | 4600 | 0.0012 | - |
0.3386 | 4650 | 0.0009 | - |
0.3422 | 4700 | 0.0008 | - |
0.3459 | 4750 | 0.0009 | - |
0.3495 | 4800 | 0.0005 | - |
0.3532 | 4850 | 0.0005 | - |
0.3568 | 4900 | 0.001 | - |
0.3604 | 4950 | 0.0005 | - |
0.3641 | 5000 | 0.0003 | - |
0.3677 | 5050 | 0.0011 | - |
0.3714 | 5100 | 0.0006 | - |
0.3750 | 5150 | 0.0007 | - |
0.3786 | 5200 | 0.0006 | - |
0.3823 | 5250 | 0.0007 | - |
0.3859 | 5300 | 0.0005 | - |
0.3896 | 5350 | 0.001 | - |
0.3932 | 5400 | 0.0006 | - |
0.3969 | 5450 | 0.0011 | - |
0.4005 | 5500 | 0.0009 | - |
0.4041 | 5550 | 0.001 | - |
0.4078 | 5600 | 0.001 | - |
0.4114 | 5650 | 0.0011 | - |
0.4151 | 5700 | 0.0007 | - |
0.4187 | 5750 | 0.0008 | - |
0.4223 | 5800 | 0.0009 | - |
0.4260 | 5850 | 0.0004 | - |
0.4296 | 5900 | 0.0007 | - |
0.4333 | 5950 | 0.0005 | - |
0.4369 | 6000 | 0.0011 | - |
0.4405 | 6050 | 0.0007 | - |
0.4442 | 6100 | 0.0007 | - |
0.4478 | 6150 | 0.0003 | - |
0.4515 | 6200 | 0.0004 | - |
0.4551 | 6250 | 0.0006 | - |
0.4587 | 6300 | 0.0003 | - |
0.4624 | 6350 | 0.001 | - |
0.4660 | 6400 | 0.0006 | - |
0.4697 | 6450 | 0.0009 | - |
0.4733 | 6500 | 0.0008 | - |
0.4770 | 6550 | 0.0009 | - |
0.4806 | 6600 | 0.0005 | - |
0.4842 | 6650 | 0.0009 | - |
0.4879 | 6700 | 0.0009 | - |
0.4915 | 6750 | 0.0012 | - |
0.4952 | 6800 | 0.0004 | - |
0.4988 | 6850 | 0.0005 | - |
0.5024 | 6900 | 0.0009 | - |
0.5061 | 6950 | 0.0014 | - |
0.5097 | 7000 | 0.0005 | - |
0.5134 | 7050 | 0.0007 | - |
0.5170 | 7100 | 0.0009 | - |
0.5206 | 7150 | 0.0011 | - |
0.5243 | 7200 | 0.001 | - |
0.5279 | 7250 | 0.0021 | - |
0.5316 | 7300 | 0.0015 | - |
0.5352 | 7350 | 0.001 | - |
0.5388 | 7400 | 0.001 | - |
0.5425 | 7450 | 0.0018 | - |
0.5461 | 7500 | 0.0009 | - |
0.5498 | 7550 | 0.0008 | - |
0.5534 | 7600 | 0.0004 | - |
0.5571 | 7650 | 0.0007 | - |
0.5607 | 7700 | 0.0009 | - |
0.5643 | 7750 | 0.0011 | - |
0.5680 | 7800 | 0.0006 | - |
0.5716 | 7850 | 0.0016 | - |
0.5753 | 7900 | 0.0016 | - |
0.5789 | 7950 | 0.0009 | - |
0.5825 | 8000 | 0.0017 | - |
0.5862 | 8050 | 0.0017 | - |
0.5898 | 8100 | 0.001 | - |
0.5935 | 8150 | 0.001 | - |
0.5971 | 8200 | 0.0005 | - |
0.6007 | 8250 | 0.0008 | - |
0.6044 | 8300 | 0.0003 | - |
0.6080 | 8350 | 0.0005 | - |
0.6117 | 8400 | 0.0006 | - |
0.6153 | 8450 | 0.0006 | - |
0.6189 | 8500 | 0.0007 | - |
0.6226 | 8550 | 0.0006 | - |
0.6262 | 8600 | 0.0007 | - |
0.6299 | 8650 | 0.0008 | - |
0.6335 | 8700 | 0.0005 | - |
0.6372 | 8750 | 0.001 | - |
0.6408 | 8800 | 0.0011 | - |
0.6444 | 8850 | 0.0008 | - |
0.6481 | 8900 | 0.0008 | - |
0.6517 | 8950 | 0.0007 | - |
0.6554 | 9000 | 0.0006 | - |
0.6590 | 9050 | 0.0008 | - |
0.6626 | 9100 | 0.0004 | - |
0.6663 | 9150 | 0.0007 | - |
0.6699 | 9200 | 0.0007 | - |
0.6736 | 9250 | 0.0002 | - |
0.6772 | 9300 | 0.0007 | - |
0.6808 | 9350 | 0.0007 | - |
0.6845 | 9400 | 0.0006 | - |
0.6881 | 9450 | 0.0007 | - |
0.6918 | 9500 | 0.0009 | - |
0.6954 | 9550 | 0.0007 | - |
0.6990 | 9600 | 0.0006 | - |
0.7027 | 9650 | 0.0009 | - |
0.7063 | 9700 | 0.0005 | - |
0.7100 | 9750 | 0.0006 | - |
0.7136 | 9800 | 0.001 | - |
0.7173 | 9850 | 0.0004 | - |
0.7209 | 9900 | 0.0006 | - |
0.7245 | 9950 | 0.0006 | - |
0.7282 | 10000 | 0.0003 | - |
0.7318 | 10050 | 0.0009 | - |
0.7355 | 10100 | 0.0006 | - |
0.7391 | 10150 | 0.0011 | - |
0.7427 | 10200 | 0.0008 | - |
0.7464 | 10250 | 0.0006 | - |
0.7500 | 10300 | 0.0008 | - |
0.7537 | 10350 | 0.0006 | - |
0.7573 | 10400 | 0.0005 | - |
0.7609 | 10450 | 0.0008 | - |
0.7646 | 10500 | 0.0007 | - |
0.7682 | 10550 | 0.0005 | - |
0.7719 | 10600 | 0.0007 | - |
0.7755 | 10650 | 0.0011 | - |
0.7791 | 10700 | 0.0011 | - |
0.7828 | 10750 | 0.0008 | - |
0.7864 | 10800 | 0.0003 | - |
0.7901 | 10850 | 0.0006 | - |
0.7937 | 10900 | 0.0009 | - |
0.7973 | 10950 | 0.0006 | - |
0.8010 | 11000 | 0.0008 | - |
0.8046 | 11050 | 0.0005 | - |
0.8083 | 11100 | 0.0014 | - |
0.8119 | 11150 | 0.0007 | - |
0.8156 | 11200 | 0.0004 | - |
0.8192 | 11250 | 0.001 | - |
0.8228 | 11300 | 0.0005 | - |
0.8265 | 11350 | 0.0003 | - |
0.8301 | 11400 | 0.0005 | - |
0.8338 | 11450 | 0.0003 | - |
0.8374 | 11500 | 0.0004 | - |
0.8410 | 11550 | 0.0006 | - |
0.8447 | 11600 | 0.0006 | - |
0.8483 | 11650 | 0.0006 | - |
0.8520 | 11700 | 0.0005 | - |
0.8556 | 11750 | 0.0008 | - |
0.8592 | 11800 | 0.0009 | - |
0.8629 | 11850 | 0.0007 | - |
0.8665 | 11900 | 0.0012 | - |
0.8702 | 11950 | 0.0003 | - |
0.8738 | 12000 | 0.0006 | - |
0.8774 | 12050 | 0.0007 | - |
0.8811 | 12100 | 0.0008 | - |
0.8847 | 12150 | 0.0003 | - |
0.8884 | 12200 | 0.0006 | - |
0.8920 | 12250 | 0.0006 | - |
0.8957 | 12300 | 0.0004 | - |
0.8993 | 12350 | 0.0005 | - |
0.9029 | 12400 | 0.0005 | - |
0.9066 | 12450 | 0.0006 | - |
0.9102 | 12500 | 0.0004 | - |
0.9139 | 12550 | 0.0005 | - |
0.9175 | 12600 | 0.0003 | - |
0.9211 | 12650 | 0.0004 | - |
0.9248 | 12700 | 0.0005 | - |
0.9284 | 12750 | 0.0006 | - |
0.9321 | 12800 | 0.0004 | - |
0.9357 | 12850 | 0.0005 | - |
0.9393 | 12900 | 0.0005 | - |
0.9430 | 12950 | 0.0011 | - |
0.9466 | 13000 | 0.0004 | - |
0.9503 | 13050 | 0.0007 | - |
0.9539 | 13100 | 0.0005 | - |
0.9575 | 13150 | 0.0006 | - |
0.9612 | 13200 | 0.0005 | - |
0.9648 | 13250 | 0.0007 | - |
0.9685 | 13300 | 0.0007 | - |
0.9721 | 13350 | 0.0004 | - |
0.9758 | 13400 | 0.0005 | - |
0.9794 | 13450 | 0.0005 | - |
0.9830 | 13500 | 0.0004 | - |
0.9867 | 13550 | 0.0006 | - |
0.9903 | 13600 | 0.0004 | - |
0.9940 | 13650 | 0.0007 | - |
0.9976 | 13700 | 0.0007 | - |
Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.54.1
- PyTorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 671
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for weizhou03/nomic-embed-text-v1.5
Base model
nomic-ai/nomic-embed-text-v1.5