|
--- |
|
base_model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- gemma3 |
|
license: apache-2.0 |
|
language: |
|
- en |
|
--- |
|
|
|
# π Fine-tuned Gemma 3 Model (4B, 4-bit) by Webkul |
|
|
|
This repository contains a fine-tuned version of [Unsloth's](https://github.com/unslothai/unsloth) `gemma-3-4b-it` model, optimized for lightweight 4-bit inference and instruction tuning using Hugging Face's [TRL](https://github.com/huggingface/trl) and Unsloth's speed-optimized framework. |
|
|
|
--- |
|
|
|
## π§ Model Details |
|
|
|
- **Base Model:** [`unsloth/gemma-3-4b-it-unsloth-bnb-4bit`](https://huggingface.co/unsloth/gemma-3-4b-it-unsloth-bnb-4bit) |
|
- **Fine-tuned By:** [Webkul](https://webkul.com) |
|
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) |
|
- **Language:** English (`en`) |
|
- **Model Size:** 4B parameters (4-bit quantized) |
|
- **Frameworks Used:** Unsloth, Hugging Face Transformers, TRL |
|
|
|
--- |
|
|
|
## π Fine-tuning Dataset |
|
|
|
This model was fine-tuned on unopim dev documentation available at [https://devdocs.unopim.com/](https://devdocs.unopim.com/), focusing on structured software documentation and developer support content. |
|
|
|
--- |
|
|
|
## π‘ Intended Use |
|
|
|
- Conversational AI assistants trained on UnoPIM developer docs |
|
- API documentation question answering |
|
- Developer tools and chatbot integrations |
|
- Contextual helpdesk or onboarding bots for UnoPIM products |
|
|
|
--- |
|
|
|
## π§ͺ How to Use |
|
|
|
You can use this model with the Hugging Face `transformers` library: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = "webkul/gemma-3-4b-it-unopim-docs" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
input_text = "How do I integrate the UnoPIM API for product syncing?" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=300) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
π License |
|
This model is licensed under the Apache License 2.0. |
|
|
|
--- |
|
|
|
|