Menda-3B-250 / README.md
weathermanj's picture
Upload README.md with huggingface_hub
577a31e verified
---
language: en
license: other
tags:
- qwen
- grpo
- instruct
- fine-tuned
- reasoning
- 3b
- menda
- chat
- transformers
library_name: transformers
datasets:
- gsm8k
model-index:
- name: Menda-3B-250
results:
- task:
type: text-generation
name: Text Generation
dataset:
type: arc-challenge
name: ARC-Challenge
metrics:
- name: Accuracy
type: accuracy
value: 50.0
- task:
type: text-generation
name: Text Generation
dataset:
type: boolq
name: BoolQ
metrics:
- name: Accuracy
type: accuracy
value: 80.0
- task:
type: text-generation
name: Text Generation
dataset:
type: hellaswag
name: HellaSwag
metrics:
- name: Accuracy
type: accuracy
value: 40.0
- task:
type: text-generation
name: Text Generation
dataset:
type: mmlu
name: MMLU (Overall)
metrics:
- name: Accuracy
type: accuracy
value: 68.95
---
# Menda-3B-250: GRPO-Tuned Qwen2.5 Model
Menda-3B-250 is a fine-tuned version of Qwen2.5-3B-Instruct, trained with GRPO (Guided Reinforcement from Preference Optimization) for 250 steps. This model shows improved performance on reasoning benchmarks compared to the base model.
## Model Details
- **Base Model**: Qwen/Qwen2.5-3B-Instruct
- **Training Method**: GRPO (Guided Reinforcement from Preference Optimization)
- **Training Steps**: 250
- **Parameters**: 3 billion
- **Context Length**: 32K tokens
- **Training Data**: GSM8K (mathematical reasoning)
- **Chat Template**: Uses the Qwen2 chat template
## Chat Format
This model uses the standard Qwen2 chat template. For best results when using the model directly, format your prompts as follows:
```
<|im_start|>system
You are a helpful AI assistant.<|im_end|>
<|im_start|>user
Your question here<|im_end|>
<|im_start|>assistant
```
When using the model through the Hugging Face Transformers library, the chat template will be applied automatically when using the `chat_template` functionality:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "weathermanj/Menda-3B-250"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Explain the concept of machine learning in simple terms."}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
## Benchmark Results
Menda-3B-250 has been evaluated on several standard benchmarks:
| Benchmark | Task Type | Accuracy |
|-----------|-----------|----------|
| ARC-Challenge | Scientific Reasoning | 50.0% |
| BoolQ | Reading Comprehension | 80.0% |
| HellaSwag | Common Sense Reasoning | 40.0% |
| Lambada | Text Completion | 70.0% |
| PIQA | Physical Reasoning | 90.0% |
| Winogrande | Commonsense Reasoning | 90.0% |
### MMLU Performance
| MMLU Category | Score |
|---------------|-------|
| Overall | 68.95% |
| Humanities | 76.92% |
| Social Sciences | 75.83% |
| STEM | 60.00% |
| Other | 67.69% |
## Key Strengths
- **Highest MMLU Score**: This checkpoint achieves the highest overall MMLU score (68.95%) among all checkpoints in the training progression.
- **Strong Humanities Performance**: Exceptional performance in humanities subjects (76.92%).
- **Efficient Training**: Achieves impressive results with minimal training (only 250 steps).
- **Balanced Capabilities**: Maintains strong performance across diverse tasks without significant trade-offs.
## Usage Examples
### Basic Usage with Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "weathermanj/Menda-3B-250"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
prompt = "Explain the concept of machine learning in simple terms."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```
### Chat Usage with Transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "weathermanj/Menda-3B-250"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "Give me a short introduction to large language models."}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
### Using with Ollama
You can also use this model with Ollama by converting it to GGUF format:
```bash
# Convert to GGUF
python -m llama_cpp.convert_hf_to_gguf weathermanj/Menda-3B-250 --outfile menda-3b-250.gguf
# Create Ollama model
cat > Modelfile << EOF
FROM menda-3b-250.gguf
TEMPLATE """{{ .Prompt }}"""
PARAMETER temperature 0.7
PARAMETER top_p 0.9
PARAMETER top_k 40
EOF
ollama create menda-3b-250 -f Modelfile
ollama run menda-3b-250
```
## Training Configuration
The model was trained using the GRPO methodology with the following configuration:
- **LoRA Rank**: 128
- **Learning Rate**: 5e-6
- **Optimizer**: AdamW (8-bit)
- **Batch Size**: 8 per device
- **Gradient Accumulation Steps**: 4
- **Training Samples**: 100 examples from GSM8K
## License
This model inherits the license of the base Qwen2.5-3B-Instruct model. Please refer to the [Qwen2 license](https://huggingface.co/Qwen/Qwen2-3B-Instruct/blob/main/LICENSE) for details.