File size: 19,927 Bytes
9b9aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
"""Copied from https://github.com/salute-developers/GigaAM/blob/main/gigaam/encoder.py"""
import math
from abc import ABC, abstractmethod
from typing import List, Optional, Tuple, Union

import torch
from torch import Tensor, nn

# try:
#     from flash_attn import flash_attn_func

#     IMPORT_FLASH = True
# except Exception as err:
#     IMPORT_FLASH = False
#     IMPORT_FLASH_ERR = err

IMPORT_FLASH = False
IMPORT_FLASH_ERR = "Flash Attention not installed."

# from .utils import apply_masked_flash_attn, apply_rotary_pos_emb


def rtt_half(x: Tensor) -> Tensor:
    x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
    return torch.cat([-x2, x1], dim=x1.ndim - 1)


def apply_rotary_pos_emb(
    q: Tensor, k: Tensor, cos: Tensor, sin: Tensor, offset: int = 0
) -> Tuple[Tensor, Tensor]:
    """
    Applies Rotary Position Embeddings to query and key tensors.
    """
    cos, sin = (
        cos[offset : q.shape[0] + offset, ...],
        sin[offset : q.shape[0] + offset, ...],
    )
    return (q * cos) + (rtt_half(q) * sin), (k * cos) + (rtt_half(k) * sin)


# def apply_masked_flash_attn(
#     q: Tensor,
#     k: Tensor,
#     v: Tensor,
#     mask: Tensor,
#     h: int,
#     d_k: int,
# ) -> Tensor:
#     """
#     Applies Flash Attention with padding masks.
#     """

#     from einops import rearrange
#     from flash_attn import flash_attn_varlen_func
#     from flash_attn.bert_padding import pad_input, unpad_input

#     pad_mask = ~mask[:, 0, :]
#     b, t = pad_mask.shape
#     q = q.view(b, t, h * d_k)
#     k = k.view(b, t, h * d_k)
#     v = v.view(b, t, h * d_k)

#     q_unpad, indices_q, _, max_seqlen_q = unpad_input(q, pad_mask)[:4]
#     q_unpad = rearrange(q_unpad, "nnz (h d) -> nnz h d", h=h)

#     k_unpad = unpad_input(k, pad_mask)[0]
#     k_unpad = rearrange(k_unpad, "nnz (h d) -> nnz h d", h=h)

#     v_unpad = unpad_input(v, pad_mask)[0]
#     v_unpad = rearrange(v_unpad, "nnz (h d) -> nnz h d", h=h)

#     lengths_q = pad_mask.sum(1).to(torch.int32).to(q.device)
#     cu_seqlens_q = F.pad(lengths_q.cumsum(0), (1, 0), value=0).to(torch.int32)
#     max_seqlen_q = torch.max(lengths_q)

#     output_unpad = flash_attn_varlen_func(
#         q_unpad,
#         k_unpad,
#         v_unpad,
#         cu_seqlens_q,
#         cu_seqlens_q,
#         max_seqlen_q,
#         max_seqlen_q,
#     )

#     scores = pad_input(
#         rearrange(output_unpad, "nnz h d -> nnz (h d)"),
#         indices_q,
#         b,
#         t,
#     )

#     return scores


class StridingSubsampling(nn.Module):
    """
    Strided Subsampling layer used to reduce the sequence length.
    """

    def __init__(
        self,
        subsampling_factor: int,
        feat_in: int,
        feat_out: int,
        conv_channels: int,
    ):
        super().__init__()
        self._sampling_num = int(math.log(subsampling_factor, 2))
        self._stride = 2
        self._kernel_size = 3
        self._padding = (self._kernel_size - 1) // 2

        layers: List[nn.Module] = []
        in_channels = 1
        for _ in range(self._sampling_num):
            layers.append(
                torch.nn.Conv2d(
                    in_channels=in_channels,
                    out_channels=conv_channels,
                    kernel_size=self._kernel_size,
                    stride=self._stride,
                    padding=self._padding,
                )
            )
            layers.append(nn.ReLU())
            in_channels = conv_channels

        out_length = self.calc_output_length(torch.tensor(feat_in))
        self.out = torch.nn.Linear(conv_channels * int(out_length), feat_out)
        self.conv = torch.nn.Sequential(*layers)

    def calc_output_length(self, lengths: Tensor) -> Tensor:
        """
        Calculates the output length after applying the subsampling.
        """
        lengths = lengths.to(torch.float)
        add_pad = 2 * self._padding - self._kernel_size
        for _ in range(self._sampling_num):
            lengths = torch.div(lengths + add_pad, self._stride) + 1.0
            lengths = torch.floor(lengths)
        return lengths.to(dtype=torch.int)

    def forward(self, x: Tensor, lengths: Tensor) -> Tuple[Tensor, Tensor]:
        x = self.conv(x.unsqueeze(1))
        b, _, t, _ = x.size()
        x = self.out(x.transpose(1, 2).reshape(b, t, -1))
        return x, self.calc_output_length(lengths)


class MultiHeadAttention(nn.Module, ABC):
    """
    Base class of Multi-Head Attention Mechanisms.
    """

    def __init__(self, n_head: int, n_feat: int, flash_attn=False):
        super().__init__()
        assert n_feat % n_head == 0
        self.d_k = n_feat // n_head
        self.h = n_head
        self.linear_q = nn.Linear(n_feat, n_feat)
        self.linear_k = nn.Linear(n_feat, n_feat)
        self.linear_v = nn.Linear(n_feat, n_feat)
        self.linear_out = nn.Linear(n_feat, n_feat)
        self.flash_attn = flash_attn
        if self.flash_attn and not IMPORT_FLASH:
            raise RuntimeError(
                f"flash_attn_func was imported with err {IMPORT_FLASH_ERR}. "
                "Please install flash_attn or use --no_flash flag. "
                "If you have already done this, "
                "--force-reinstall flag might be useful"
            )

    def forward_qkv(
        self, query: Tensor, key: Tensor, value: Tensor
    ) -> Tuple[Tensor, Tensor, Tensor]:
        """
        Projects the inputs into queries, keys, and values for multi-head attention.
        """
        b = query.size(0)
        q = self.linear_q(query).view(b, -1, self.h, self.d_k)
        k = self.linear_k(key).view(b, -1, self.h, self.d_k)
        v = self.linear_v(value).view(b, -1, self.h, self.d_k)
        if self.flash_attn:
            return q, k, v
        return q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)

    def forward_attention(
        self, value: Tensor, scores: Tensor, mask: Optional[Tensor]
    ) -> Tensor:
        """
        Computes the scaled dot-product attention given the projected values and scores.
        """
        b = value.size(0)
        if mask is not None:
            mask = mask.unsqueeze(1)
            scores = scores.masked_fill(mask, -10000.0)
            attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
        else:
            attn = torch.softmax(scores, dim=-1)
        x = torch.matmul(attn, value)
        x = x.transpose(1, 2).reshape(b, -1, self.h * self.d_k)
        return self.linear_out(x)


class RelPositionMultiHeadAttention(MultiHeadAttention):
    """
    Relative Position Multi-Head Attention module.
    """

    def __init__(self, n_head: int, n_feat: int):
        super().__init__(n_head, n_feat)
        self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
        self.pos_bias_u = nn.Parameter(torch.FloatTensor(self.h, self.d_k))
        self.pos_bias_v = nn.Parameter(torch.FloatTensor(self.h, self.d_k))

    def rel_shift(self, x: Tensor) -> Tensor:
        b, h, qlen, pos_len = x.size()
        x = torch.nn.functional.pad(x, pad=(1, 0))
        x = x.view(b, h, -1, qlen)
        return x[:, :, 1:].view(b, h, qlen, pos_len)

    def forward(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        pos_emb: Tensor,
        mask: Optional[Tensor] = None,
    ) -> Tensor:
        q, k, v = self.forward_qkv(query, key, value)
        q = q.transpose(1, 2)
        p = self.linear_pos(pos_emb)
        p = p.view(pos_emb.shape[0], -1, self.h, self.d_k).transpose(1, 2)
        q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
        q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
        matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
        matrix_bd = self.rel_shift(matrix_bd)
        matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
        matrix_bd = matrix_bd[:, :, :, : matrix_ac.size(-1)]
        scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
        return self.forward_attention(v, scores, mask)


class RotaryPositionMultiHeadAttention(MultiHeadAttention):
    """
    Rotary Position Multi-Head Attention module.
    """

    def forward(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        pos_emb: List[Tensor],
        mask: Optional[Tensor] = None,
    ) -> Tensor:
        b, t, _ = value.size()
        query = query.transpose(0, 1).view(t, b, self.h, self.d_k)
        key = key.transpose(0, 1).view(t, b, self.h, self.d_k)
        value = value.transpose(0, 1).view(t, b, self.h, self.d_k)

        cos, sin = pos_emb
        query, key = apply_rotary_pos_emb(query, key, cos, sin, offset=0)

        q, k, v = self.forward_qkv(
            query.view(t, b, self.h * self.d_k).transpose(0, 1),
            key.view(t, b, self.h * self.d_k).transpose(0, 1),
            value.view(t, b, self.h * self.d_k).transpose(0, 1),
        )

        # if not self.flash_attn:
        scores = torch.matmul(q, k.transpose(-2, -1) / math.sqrt(self.d_k))
        out = self.forward_attention(v, scores, mask)
        # else:
        #     if mask is None:
        #         scores = flash_attn_func(q, k, v)
        #     else:
        #         scores = apply_masked_flash_attn(q, k, v, mask, self.h, self.d_k)

        #     scores = scores.view(b, -1, self.h * self.d_k)
        #     out = self.linear_out(scores)

        return out


class PositionalEncoding(nn.Module, ABC):
    """
    Base class of Positional Encodings.
    """

    def __init__(self, dim: int, base: int):
        super().__init__()
        self.dim = dim
        self.base = base

    @abstractmethod
    def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
        pass

    def extend_pe(self, length: int, device: torch.device):
        """
        Extends the positional encoding buffer to process longer sequences.
        """
        pe = self.create_pe(length, device)
        if pe is None:
            return
        if hasattr(self, "pe"):
            self.pe = pe
        else:
            self.register_buffer("pe", pe, persistent=False)


class RelPositionalEmbedding(PositionalEncoding):
    """
    Relative Positional Embedding module.
    """

    def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
        """
        Creates the relative positional encoding matrix.
        """
        if hasattr(self, "pe") and self.pe.shape[1] >= 2 * length - 1:
            return None
        positions = torch.arange(length - 1, -length, -1, device=device).unsqueeze(1)
        pos_length = positions.size(0)
        pe = torch.zeros(pos_length, self.dim, device=positions.device)
        div_term = torch.exp(
            torch.arange(0, self.dim, 2, device=pe.device)
            * -(math.log(10000.0) / self.dim)
        )
        pe[:, 0::2] = torch.sin(positions * div_term)
        pe[:, 1::2] = torch.cos(positions * div_term)
        return pe.unsqueeze(0)

    def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
        input_len = x.size(1)
        center_pos = self.pe.size(1) // 2 + 1
        start_pos = center_pos - input_len
        end_pos = center_pos + input_len - 1
        return x, self.pe[:, start_pos:end_pos]


class RotaryPositionalEmbedding(PositionalEncoding):
    """
    Rotary Positional Embedding module.
    """

    def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
        """
        Creates or extends the rotary positional encoding matrix.
        """
        if hasattr(self, "pe") and self.pe.size(0) >= 2 * length:
            return None
        positions = torch.arange(0, length, dtype=torch.float32, device=device)
        inv_freq = 1.0 / (
            self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)
        )
        t = torch.arange(length, device=positions.device).type_as(inv_freq)
        freqs = torch.einsum("i,j->ij", t, inv_freq)
        emb = torch.cat((freqs, freqs), dim=-1).to(positions.device)
        return torch.cat([emb.cos()[:, None, None, :], emb.sin()[:, None, None, :]])

    def forward(self, x: torch.Tensor) -> Tuple[Tensor, List[Tensor]]:
        cos_emb = self.pe[0 : x.shape[1]]
        half_pe = self.pe.shape[0] // 2
        sin_emb = self.pe[half_pe : half_pe + x.shape[1]]
        return x, [cos_emb, sin_emb]


class ConformerConvolution(nn.Module):
    """
    Conformer Convolution module.
    """

    def __init__(
        self,
        d_model: int,
        kernel_size: int,
    ):
        super().__init__()
        assert (kernel_size - 1) % 2 == 0
        self.pointwise_conv1 = nn.Conv1d(d_model, d_model * 2, kernel_size=1)
        self.depthwise_conv = nn.Conv1d(
            in_channels=d_model,
            out_channels=d_model,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            groups=d_model,
            bias=True,
        )
        self.batch_norm = nn.BatchNorm1d(d_model)
        self.activation = nn.SiLU()
        self.pointwise_conv2 = nn.Conv1d(d_model, d_model, kernel_size=1)

    def forward(self, x: Tensor, pad_mask: Optional[Tensor] = None) -> Tensor:
        x = x.transpose(1, 2)
        x = self.pointwise_conv1(x)
        x = nn.functional.glu(x, dim=1)
        if pad_mask is not None:
            x = x.masked_fill(pad_mask.unsqueeze(1), 0.0)
        x = self.depthwise_conv(x)
        x = self.batch_norm(x)
        x = self.activation(x)
        x = self.pointwise_conv2(x)
        return x.transpose(1, 2)


class ConformerFeedForward(nn.Module):
    """
    Conformer Feed Forward module.
    """

    def __init__(self, d_model: int, d_ff: int, use_bias=True):
        super().__init__()
        self.linear1 = nn.Linear(d_model, d_ff, bias=use_bias)
        self.activation = nn.SiLU()
        self.linear2 = nn.Linear(d_ff, d_model, bias=use_bias)

    def forward(self, x: Tensor) -> Tensor:
        return self.linear2(self.activation(self.linear1(x)))


class ConformerLayer(nn.Module):
    """
    Conformer Layer module.
    This module combines several submodules including feed forward networks,
    depthwise separable convolution, and multi-head self-attention
    to form a single Conformer block.
    """

    def __init__(
        self,
        d_model: int,
        d_ff: int,
        self_attention_model: str,
        n_heads: int = 16,
        conv_kernel_size: int = 31,
        flash_attn: bool = False,
    ):
        super().__init__()
        self.fc_factor = 0.5
        self.norm_feed_forward1 = nn.LayerNorm(d_model)
        self.feed_forward1 = ConformerFeedForward(d_model=d_model, d_ff=d_ff)
        self.norm_conv = nn.LayerNorm(d_model)
        self.conv = ConformerConvolution(
            d_model=d_model,
            kernel_size=conv_kernel_size,
        )
        self.norm_self_att = nn.LayerNorm(d_model)
        if self_attention_model == "rotary":
            self.self_attn: nn.Module = RotaryPositionMultiHeadAttention(
                n_head=n_heads,
                n_feat=d_model,
                flash_attn=flash_attn,
            )
        else:
            assert not flash_attn, "Not supported flash_attn for rel_pos"
            self.self_attn = RelPositionMultiHeadAttention(
                n_head=n_heads,
                n_feat=d_model,
            )
        self.norm_feed_forward2 = nn.LayerNorm(d_model)
        self.feed_forward2 = ConformerFeedForward(d_model=d_model, d_ff=d_ff)
        self.norm_out = nn.LayerNorm(d_model)

    def forward(
        self,
        x: Tensor,
        pos_emb: Union[Tensor, List[Tensor]],
        att_mask: Optional[Tensor] = None,
        pad_mask: Optional[Tensor] = None,
    ) -> Tensor:
        residual = x
        x = self.norm_feed_forward1(x)
        x = self.feed_forward1(x)
        residual = residual + x * self.fc_factor

        x = self.norm_self_att(residual)
        x = self.self_attn(x, x, x, pos_emb, mask=att_mask)
        residual = residual + x

        x = self.norm_conv(residual)
        x = self.conv(x, pad_mask=pad_mask)
        residual = residual + x

        x = self.norm_feed_forward2(residual)
        x = self.feed_forward2(x)
        residual = residual + x * self.fc_factor

        x = self.norm_out(residual)
        return x


class ConformerEncoder(nn.Module):
    """
    Conformer Encoder module.
    This module encapsulates the entire Conformer encoder architecture,
    consisting of a StridingSubsampling layer, positional embeddings, and
    a stack of Conformer Layers.
    It serves as the main component responsible for processing speech features.
    """

    def __init__(
        self,
        feat_in: int = 64,
        n_layers: int = 16,
        d_model: int = 768,
        subsampling_factor: int = 4,
        ff_expansion_factor: int = 4,
        self_attention_model: str = "rotary",
        n_heads: int = 16,
        pos_emb_max_len: int = 5000,
        conv_kernel_size: int = 31,
        flash_attn: bool = False,
    ):
        super().__init__()
        self.feat_in = feat_in
        assert self_attention_model in [
            "rotary",
            "rel_pos",
        ], f"Not supported attn = {self_attention_model}"

        self.pre_encode = StridingSubsampling(
            subsampling_factor=subsampling_factor,
            feat_in=feat_in,
            feat_out=d_model,
            conv_channels=d_model,
        )

        if self_attention_model == "rotary":
            self.pos_enc: nn.Module = RotaryPositionalEmbedding(
                d_model // n_heads, pos_emb_max_len
            )
        else:
            self.pos_enc = RelPositionalEmbedding(d_model, pos_emb_max_len)

        self.layers = nn.ModuleList()
        for _ in range(n_layers):
            layer = ConformerLayer(
                d_model=d_model,
                d_ff=d_model * ff_expansion_factor,
                self_attention_model=self_attention_model,
                n_heads=n_heads,
                conv_kernel_size=conv_kernel_size,
                flash_attn=flash_attn,
            )
            self.layers.append(layer)

        self.pos_enc.extend_pe(pos_emb_max_len, next(self.parameters()).device)

    def input_example(
        self,
        batch_size: int = 1,
        seqlen: int = 200,
    ):
        device = next(self.parameters()).device
        features = torch.zeros(batch_size, self.feat_in, seqlen)
        feature_lengths = torch.full([batch_size], features.shape[-1])
        return features.float().to(device), feature_lengths.to(device)

    def input_names(self):
        return ["audio_signal", "length"]

    def output_names(self):
        return ["encoded", "encoded_len"]

    def dynamic_axes(self):
        return {
            "audio_signal": {0: "batch_size", 2: "seq_len"},
            "length": {0: "batch_size"},
            "encoded": {0: "batch_size", 1: "seq_len"},
            "encoded_len": {0: "batch_size"},
        }

    def forward(self, audio_signal: Tensor, length: Tensor) -> Tuple[Tensor, Tensor]:
        audio_signal, length = self.pre_encode(
            x=audio_signal.transpose(1, 2), lengths=length
        )

        max_len = audio_signal.size(1)
        audio_signal, pos_emb = self.pos_enc(x=audio_signal)

        pad_mask = torch.arange(0, max_len, device=audio_signal.device).expand(
            length.size(0), -1
        ) < length.unsqueeze(-1)

        att_mask = None
        if audio_signal.shape[0] > 1:
            att_mask = pad_mask.unsqueeze(1).repeat([1, max_len, 1])
            att_mask = torch.logical_and(att_mask, att_mask.transpose(1, 2))
            att_mask = ~att_mask

        pad_mask = ~pad_mask

        for layer in self.layers:
            audio_signal = layer(
                x=audio_signal,
                pos_emb=pos_emb,
                att_mask=att_mask,
                pad_mask=pad_mask,
            )

        return audio_signal.transpose(1, 2), length