Upload 9 files
Browse files- added_tokens.json +5 -0
- config.json +73 -0
- encoder.py +604 -0
- gigaam_transformers.py +447 -0
- preprocessor_config.json +18 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +5 -0
- tokenizer_config.json +27 -0
- vocab.json +37 -0
added_tokens.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 35,
|
3 |
+
"<s>": 34
|
4 |
+
}
|
5 |
+
|
config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map":{
|
3 |
+
"AutoConfig": "gigaam_transformers.GigaAMConfig",
|
4 |
+
"AutoModel": "gigaam_transformers.GigaAMRNNTHF",
|
5 |
+
"AutoProcessor": "gigaam_transformers.GigaAMProcessor",
|
6 |
+
"AutoTokenizer": "gigaam_transformers.GigaAMTokenizer",
|
7 |
+
"AutoFeatureExtractor": "gigaam_transformers.GigaAMFeatureExtractor"
|
8 |
+
},
|
9 |
+
|
10 |
+
"encoder": {
|
11 |
+
"feat_in": 64,
|
12 |
+
"n_layers": 16,
|
13 |
+
"d_model": 768,
|
14 |
+
"subsampling_factor": 4,
|
15 |
+
"ff_expansion_factor": 4,
|
16 |
+
"self_attention_model": "rotary",
|
17 |
+
"pos_emb_max_len": 5000,
|
18 |
+
"n_heads": 16,
|
19 |
+
"conv_kernel_size": 31,
|
20 |
+
"flash_attn": false
|
21 |
+
},
|
22 |
+
"head": {
|
23 |
+
"decoder": {
|
24 |
+
"pred_hidden": 320,
|
25 |
+
"pred_rnn_layers": 1,
|
26 |
+
"num_classes": 34
|
27 |
+
},
|
28 |
+
"joint": {
|
29 |
+
"enc_hidden": 768,
|
30 |
+
"pred_hidden": 320,
|
31 |
+
"joint_hidden": 320,
|
32 |
+
"num_classes": 34
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"labels": [
|
36 |
+
" ",
|
37 |
+
"а",
|
38 |
+
"б",
|
39 |
+
"в",
|
40 |
+
"г",
|
41 |
+
"д",
|
42 |
+
"е",
|
43 |
+
"ж",
|
44 |
+
"з",
|
45 |
+
"и",
|
46 |
+
"й",
|
47 |
+
"к",
|
48 |
+
"л",
|
49 |
+
"м",
|
50 |
+
"н",
|
51 |
+
"о",
|
52 |
+
"п",
|
53 |
+
"р",
|
54 |
+
"с",
|
55 |
+
"т",
|
56 |
+
"у",
|
57 |
+
"ф",
|
58 |
+
"х",
|
59 |
+
"ц",
|
60 |
+
"ч",
|
61 |
+
"ш",
|
62 |
+
"щ",
|
63 |
+
"ъ",
|
64 |
+
"ы",
|
65 |
+
"ь",
|
66 |
+
"э",
|
67 |
+
"ю",
|
68 |
+
"я"
|
69 |
+
],
|
70 |
+
"blank_id": 33,
|
71 |
+
"max_symbols": 1000,
|
72 |
+
"model_type": "gigaam-rnnt"
|
73 |
+
}
|
encoder.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Copied from https://github.com/salute-developers/GigaAM/blob/main/gigaam/encoder.py"""
|
2 |
+
import math
|
3 |
+
from abc import ABC, abstractmethod
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import Tensor, nn
|
8 |
+
|
9 |
+
# try:
|
10 |
+
# from flash_attn import flash_attn_func
|
11 |
+
|
12 |
+
# IMPORT_FLASH = True
|
13 |
+
# except Exception as err:
|
14 |
+
# IMPORT_FLASH = False
|
15 |
+
# IMPORT_FLASH_ERR = err
|
16 |
+
|
17 |
+
IMPORT_FLASH = False
|
18 |
+
IMPORT_FLASH_ERR = "Flash Attention not installed."
|
19 |
+
|
20 |
+
# from .utils import apply_masked_flash_attn, apply_rotary_pos_emb
|
21 |
+
|
22 |
+
|
23 |
+
def rtt_half(x: Tensor) -> Tensor:
|
24 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
25 |
+
return torch.cat([-x2, x1], dim=x1.ndim - 1)
|
26 |
+
|
27 |
+
|
28 |
+
def apply_rotary_pos_emb(
|
29 |
+
q: Tensor, k: Tensor, cos: Tensor, sin: Tensor, offset: int = 0
|
30 |
+
) -> Tuple[Tensor, Tensor]:
|
31 |
+
"""
|
32 |
+
Applies Rotary Position Embeddings to query and key tensors.
|
33 |
+
"""
|
34 |
+
cos, sin = (
|
35 |
+
cos[offset : q.shape[0] + offset, ...],
|
36 |
+
sin[offset : q.shape[0] + offset, ...],
|
37 |
+
)
|
38 |
+
return (q * cos) + (rtt_half(q) * sin), (k * cos) + (rtt_half(k) * sin)
|
39 |
+
|
40 |
+
|
41 |
+
# def apply_masked_flash_attn(
|
42 |
+
# q: Tensor,
|
43 |
+
# k: Tensor,
|
44 |
+
# v: Tensor,
|
45 |
+
# mask: Tensor,
|
46 |
+
# h: int,
|
47 |
+
# d_k: int,
|
48 |
+
# ) -> Tensor:
|
49 |
+
# """
|
50 |
+
# Applies Flash Attention with padding masks.
|
51 |
+
# """
|
52 |
+
|
53 |
+
# from einops import rearrange
|
54 |
+
# from flash_attn import flash_attn_varlen_func
|
55 |
+
# from flash_attn.bert_padding import pad_input, unpad_input
|
56 |
+
|
57 |
+
# pad_mask = ~mask[:, 0, :]
|
58 |
+
# b, t = pad_mask.shape
|
59 |
+
# q = q.view(b, t, h * d_k)
|
60 |
+
# k = k.view(b, t, h * d_k)
|
61 |
+
# v = v.view(b, t, h * d_k)
|
62 |
+
|
63 |
+
# q_unpad, indices_q, _, max_seqlen_q = unpad_input(q, pad_mask)[:4]
|
64 |
+
# q_unpad = rearrange(q_unpad, "nnz (h d) -> nnz h d", h=h)
|
65 |
+
|
66 |
+
# k_unpad = unpad_input(k, pad_mask)[0]
|
67 |
+
# k_unpad = rearrange(k_unpad, "nnz (h d) -> nnz h d", h=h)
|
68 |
+
|
69 |
+
# v_unpad = unpad_input(v, pad_mask)[0]
|
70 |
+
# v_unpad = rearrange(v_unpad, "nnz (h d) -> nnz h d", h=h)
|
71 |
+
|
72 |
+
# lengths_q = pad_mask.sum(1).to(torch.int32).to(q.device)
|
73 |
+
# cu_seqlens_q = F.pad(lengths_q.cumsum(0), (1, 0), value=0).to(torch.int32)
|
74 |
+
# max_seqlen_q = torch.max(lengths_q)
|
75 |
+
|
76 |
+
# output_unpad = flash_attn_varlen_func(
|
77 |
+
# q_unpad,
|
78 |
+
# k_unpad,
|
79 |
+
# v_unpad,
|
80 |
+
# cu_seqlens_q,
|
81 |
+
# cu_seqlens_q,
|
82 |
+
# max_seqlen_q,
|
83 |
+
# max_seqlen_q,
|
84 |
+
# )
|
85 |
+
|
86 |
+
# scores = pad_input(
|
87 |
+
# rearrange(output_unpad, "nnz h d -> nnz (h d)"),
|
88 |
+
# indices_q,
|
89 |
+
# b,
|
90 |
+
# t,
|
91 |
+
# )
|
92 |
+
|
93 |
+
# return scores
|
94 |
+
|
95 |
+
|
96 |
+
class StridingSubsampling(nn.Module):
|
97 |
+
"""
|
98 |
+
Strided Subsampling layer used to reduce the sequence length.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
subsampling_factor: int,
|
104 |
+
feat_in: int,
|
105 |
+
feat_out: int,
|
106 |
+
conv_channels: int,
|
107 |
+
):
|
108 |
+
super().__init__()
|
109 |
+
self._sampling_num = int(math.log(subsampling_factor, 2))
|
110 |
+
self._stride = 2
|
111 |
+
self._kernel_size = 3
|
112 |
+
self._padding = (self._kernel_size - 1) // 2
|
113 |
+
|
114 |
+
layers: List[nn.Module] = []
|
115 |
+
in_channels = 1
|
116 |
+
for _ in range(self._sampling_num):
|
117 |
+
layers.append(
|
118 |
+
torch.nn.Conv2d(
|
119 |
+
in_channels=in_channels,
|
120 |
+
out_channels=conv_channels,
|
121 |
+
kernel_size=self._kernel_size,
|
122 |
+
stride=self._stride,
|
123 |
+
padding=self._padding,
|
124 |
+
)
|
125 |
+
)
|
126 |
+
layers.append(nn.ReLU())
|
127 |
+
in_channels = conv_channels
|
128 |
+
|
129 |
+
out_length = self.calc_output_length(torch.tensor(feat_in))
|
130 |
+
self.out = torch.nn.Linear(conv_channels * int(out_length), feat_out)
|
131 |
+
self.conv = torch.nn.Sequential(*layers)
|
132 |
+
|
133 |
+
def calc_output_length(self, lengths: Tensor) -> Tensor:
|
134 |
+
"""
|
135 |
+
Calculates the output length after applying the subsampling.
|
136 |
+
"""
|
137 |
+
lengths = lengths.to(torch.float)
|
138 |
+
add_pad = 2 * self._padding - self._kernel_size
|
139 |
+
for _ in range(self._sampling_num):
|
140 |
+
lengths = torch.div(lengths + add_pad, self._stride) + 1.0
|
141 |
+
lengths = torch.floor(lengths)
|
142 |
+
return lengths.to(dtype=torch.int)
|
143 |
+
|
144 |
+
def forward(self, x: Tensor, lengths: Tensor) -> Tuple[Tensor, Tensor]:
|
145 |
+
x = self.conv(x.unsqueeze(1))
|
146 |
+
b, _, t, _ = x.size()
|
147 |
+
x = self.out(x.transpose(1, 2).reshape(b, t, -1))
|
148 |
+
return x, self.calc_output_length(lengths)
|
149 |
+
|
150 |
+
|
151 |
+
class MultiHeadAttention(nn.Module, ABC):
|
152 |
+
"""
|
153 |
+
Base class of Multi-Head Attention Mechanisms.
|
154 |
+
"""
|
155 |
+
|
156 |
+
def __init__(self, n_head: int, n_feat: int, flash_attn=False):
|
157 |
+
super().__init__()
|
158 |
+
assert n_feat % n_head == 0
|
159 |
+
self.d_k = n_feat // n_head
|
160 |
+
self.h = n_head
|
161 |
+
self.linear_q = nn.Linear(n_feat, n_feat)
|
162 |
+
self.linear_k = nn.Linear(n_feat, n_feat)
|
163 |
+
self.linear_v = nn.Linear(n_feat, n_feat)
|
164 |
+
self.linear_out = nn.Linear(n_feat, n_feat)
|
165 |
+
self.flash_attn = flash_attn
|
166 |
+
if self.flash_attn and not IMPORT_FLASH:
|
167 |
+
raise RuntimeError(
|
168 |
+
f"flash_attn_func was imported with err {IMPORT_FLASH_ERR}. "
|
169 |
+
"Please install flash_attn or use --no_flash flag. "
|
170 |
+
"If you have already done this, "
|
171 |
+
"--force-reinstall flag might be useful"
|
172 |
+
)
|
173 |
+
|
174 |
+
def forward_qkv(
|
175 |
+
self, query: Tensor, key: Tensor, value: Tensor
|
176 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
177 |
+
"""
|
178 |
+
Projects the inputs into queries, keys, and values for multi-head attention.
|
179 |
+
"""
|
180 |
+
b = query.size(0)
|
181 |
+
q = self.linear_q(query).view(b, -1, self.h, self.d_k)
|
182 |
+
k = self.linear_k(key).view(b, -1, self.h, self.d_k)
|
183 |
+
v = self.linear_v(value).view(b, -1, self.h, self.d_k)
|
184 |
+
if self.flash_attn:
|
185 |
+
return q, k, v
|
186 |
+
return q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
|
187 |
+
|
188 |
+
def forward_attention(
|
189 |
+
self, value: Tensor, scores: Tensor, mask: Optional[Tensor]
|
190 |
+
) -> Tensor:
|
191 |
+
"""
|
192 |
+
Computes the scaled dot-product attention given the projected values and scores.
|
193 |
+
"""
|
194 |
+
b = value.size(0)
|
195 |
+
if mask is not None:
|
196 |
+
mask = mask.unsqueeze(1)
|
197 |
+
scores = scores.masked_fill(mask, -10000.0)
|
198 |
+
attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0)
|
199 |
+
else:
|
200 |
+
attn = torch.softmax(scores, dim=-1)
|
201 |
+
x = torch.matmul(attn, value)
|
202 |
+
x = x.transpose(1, 2).reshape(b, -1, self.h * self.d_k)
|
203 |
+
return self.linear_out(x)
|
204 |
+
|
205 |
+
|
206 |
+
class RelPositionMultiHeadAttention(MultiHeadAttention):
|
207 |
+
"""
|
208 |
+
Relative Position Multi-Head Attention module.
|
209 |
+
"""
|
210 |
+
|
211 |
+
def __init__(self, n_head: int, n_feat: int):
|
212 |
+
super().__init__(n_head, n_feat)
|
213 |
+
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
|
214 |
+
self.pos_bias_u = nn.Parameter(torch.FloatTensor(self.h, self.d_k))
|
215 |
+
self.pos_bias_v = nn.Parameter(torch.FloatTensor(self.h, self.d_k))
|
216 |
+
|
217 |
+
def rel_shift(self, x: Tensor) -> Tensor:
|
218 |
+
b, h, qlen, pos_len = x.size()
|
219 |
+
x = torch.nn.functional.pad(x, pad=(1, 0))
|
220 |
+
x = x.view(b, h, -1, qlen)
|
221 |
+
return x[:, :, 1:].view(b, h, qlen, pos_len)
|
222 |
+
|
223 |
+
def forward(
|
224 |
+
self,
|
225 |
+
query: Tensor,
|
226 |
+
key: Tensor,
|
227 |
+
value: Tensor,
|
228 |
+
pos_emb: Tensor,
|
229 |
+
mask: Optional[Tensor] = None,
|
230 |
+
) -> Tensor:
|
231 |
+
q, k, v = self.forward_qkv(query, key, value)
|
232 |
+
q = q.transpose(1, 2)
|
233 |
+
p = self.linear_pos(pos_emb)
|
234 |
+
p = p.view(pos_emb.shape[0], -1, self.h, self.d_k).transpose(1, 2)
|
235 |
+
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
|
236 |
+
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
|
237 |
+
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
|
238 |
+
matrix_bd = self.rel_shift(matrix_bd)
|
239 |
+
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
|
240 |
+
matrix_bd = matrix_bd[:, :, :, : matrix_ac.size(-1)]
|
241 |
+
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
|
242 |
+
return self.forward_attention(v, scores, mask)
|
243 |
+
|
244 |
+
|
245 |
+
class RotaryPositionMultiHeadAttention(MultiHeadAttention):
|
246 |
+
"""
|
247 |
+
Rotary Position Multi-Head Attention module.
|
248 |
+
"""
|
249 |
+
|
250 |
+
def forward(
|
251 |
+
self,
|
252 |
+
query: Tensor,
|
253 |
+
key: Tensor,
|
254 |
+
value: Tensor,
|
255 |
+
pos_emb: List[Tensor],
|
256 |
+
mask: Optional[Tensor] = None,
|
257 |
+
) -> Tensor:
|
258 |
+
b, t, _ = value.size()
|
259 |
+
query = query.transpose(0, 1).view(t, b, self.h, self.d_k)
|
260 |
+
key = key.transpose(0, 1).view(t, b, self.h, self.d_k)
|
261 |
+
value = value.transpose(0, 1).view(t, b, self.h, self.d_k)
|
262 |
+
|
263 |
+
cos, sin = pos_emb
|
264 |
+
query, key = apply_rotary_pos_emb(query, key, cos, sin, offset=0)
|
265 |
+
|
266 |
+
q, k, v = self.forward_qkv(
|
267 |
+
query.view(t, b, self.h * self.d_k).transpose(0, 1),
|
268 |
+
key.view(t, b, self.h * self.d_k).transpose(0, 1),
|
269 |
+
value.view(t, b, self.h * self.d_k).transpose(0, 1),
|
270 |
+
)
|
271 |
+
|
272 |
+
# if not self.flash_attn:
|
273 |
+
scores = torch.matmul(q, k.transpose(-2, -1) / math.sqrt(self.d_k))
|
274 |
+
out = self.forward_attention(v, scores, mask)
|
275 |
+
# else:
|
276 |
+
# if mask is None:
|
277 |
+
# scores = flash_attn_func(q, k, v)
|
278 |
+
# else:
|
279 |
+
# scores = apply_masked_flash_attn(q, k, v, mask, self.h, self.d_k)
|
280 |
+
|
281 |
+
# scores = scores.view(b, -1, self.h * self.d_k)
|
282 |
+
# out = self.linear_out(scores)
|
283 |
+
|
284 |
+
return out
|
285 |
+
|
286 |
+
|
287 |
+
class PositionalEncoding(nn.Module, ABC):
|
288 |
+
"""
|
289 |
+
Base class of Positional Encodings.
|
290 |
+
"""
|
291 |
+
|
292 |
+
def __init__(self, dim: int, base: int):
|
293 |
+
super().__init__()
|
294 |
+
self.dim = dim
|
295 |
+
self.base = base
|
296 |
+
|
297 |
+
@abstractmethod
|
298 |
+
def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
|
299 |
+
pass
|
300 |
+
|
301 |
+
def extend_pe(self, length: int, device: torch.device):
|
302 |
+
"""
|
303 |
+
Extends the positional encoding buffer to process longer sequences.
|
304 |
+
"""
|
305 |
+
pe = self.create_pe(length, device)
|
306 |
+
if pe is None:
|
307 |
+
return
|
308 |
+
if hasattr(self, "pe"):
|
309 |
+
self.pe = pe
|
310 |
+
else:
|
311 |
+
self.register_buffer("pe", pe, persistent=False)
|
312 |
+
|
313 |
+
|
314 |
+
class RelPositionalEmbedding(PositionalEncoding):
|
315 |
+
"""
|
316 |
+
Relative Positional Embedding module.
|
317 |
+
"""
|
318 |
+
|
319 |
+
def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
|
320 |
+
"""
|
321 |
+
Creates the relative positional encoding matrix.
|
322 |
+
"""
|
323 |
+
if hasattr(self, "pe") and self.pe.shape[1] >= 2 * length - 1:
|
324 |
+
return None
|
325 |
+
positions = torch.arange(length - 1, -length, -1, device=device).unsqueeze(1)
|
326 |
+
pos_length = positions.size(0)
|
327 |
+
pe = torch.zeros(pos_length, self.dim, device=positions.device)
|
328 |
+
div_term = torch.exp(
|
329 |
+
torch.arange(0, self.dim, 2, device=pe.device)
|
330 |
+
* -(math.log(10000.0) / self.dim)
|
331 |
+
)
|
332 |
+
pe[:, 0::2] = torch.sin(positions * div_term)
|
333 |
+
pe[:, 1::2] = torch.cos(positions * div_term)
|
334 |
+
return pe.unsqueeze(0)
|
335 |
+
|
336 |
+
def forward(self, x: torch.Tensor) -> Tuple[Tensor, Tensor]:
|
337 |
+
input_len = x.size(1)
|
338 |
+
center_pos = self.pe.size(1) // 2 + 1
|
339 |
+
start_pos = center_pos - input_len
|
340 |
+
end_pos = center_pos + input_len - 1
|
341 |
+
return x, self.pe[:, start_pos:end_pos]
|
342 |
+
|
343 |
+
|
344 |
+
class RotaryPositionalEmbedding(PositionalEncoding):
|
345 |
+
"""
|
346 |
+
Rotary Positional Embedding module.
|
347 |
+
"""
|
348 |
+
|
349 |
+
def create_pe(self, length: int, device: torch.device) -> Optional[Tensor]:
|
350 |
+
"""
|
351 |
+
Creates or extends the rotary positional encoding matrix.
|
352 |
+
"""
|
353 |
+
if hasattr(self, "pe") and self.pe.size(0) >= 2 * length:
|
354 |
+
return None
|
355 |
+
positions = torch.arange(0, length, dtype=torch.float32, device=device)
|
356 |
+
inv_freq = 1.0 / (
|
357 |
+
self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)
|
358 |
+
)
|
359 |
+
t = torch.arange(length, device=positions.device).type_as(inv_freq)
|
360 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
361 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(positions.device)
|
362 |
+
return torch.cat([emb.cos()[:, None, None, :], emb.sin()[:, None, None, :]])
|
363 |
+
|
364 |
+
def forward(self, x: torch.Tensor) -> Tuple[Tensor, List[Tensor]]:
|
365 |
+
cos_emb = self.pe[0 : x.shape[1]]
|
366 |
+
half_pe = self.pe.shape[0] // 2
|
367 |
+
sin_emb = self.pe[half_pe : half_pe + x.shape[1]]
|
368 |
+
return x, [cos_emb, sin_emb]
|
369 |
+
|
370 |
+
|
371 |
+
class ConformerConvolution(nn.Module):
|
372 |
+
"""
|
373 |
+
Conformer Convolution module.
|
374 |
+
"""
|
375 |
+
|
376 |
+
def __init__(
|
377 |
+
self,
|
378 |
+
d_model: int,
|
379 |
+
kernel_size: int,
|
380 |
+
):
|
381 |
+
super().__init__()
|
382 |
+
assert (kernel_size - 1) % 2 == 0
|
383 |
+
self.pointwise_conv1 = nn.Conv1d(d_model, d_model * 2, kernel_size=1)
|
384 |
+
self.depthwise_conv = nn.Conv1d(
|
385 |
+
in_channels=d_model,
|
386 |
+
out_channels=d_model,
|
387 |
+
kernel_size=kernel_size,
|
388 |
+
padding=(kernel_size - 1) // 2,
|
389 |
+
groups=d_model,
|
390 |
+
bias=True,
|
391 |
+
)
|
392 |
+
self.batch_norm = nn.BatchNorm1d(d_model)
|
393 |
+
self.activation = nn.SiLU()
|
394 |
+
self.pointwise_conv2 = nn.Conv1d(d_model, d_model, kernel_size=1)
|
395 |
+
|
396 |
+
def forward(self, x: Tensor, pad_mask: Optional[Tensor] = None) -> Tensor:
|
397 |
+
x = x.transpose(1, 2)
|
398 |
+
x = self.pointwise_conv1(x)
|
399 |
+
x = nn.functional.glu(x, dim=1)
|
400 |
+
if pad_mask is not None:
|
401 |
+
x = x.masked_fill(pad_mask.unsqueeze(1), 0.0)
|
402 |
+
x = self.depthwise_conv(x)
|
403 |
+
x = self.batch_norm(x)
|
404 |
+
x = self.activation(x)
|
405 |
+
x = self.pointwise_conv2(x)
|
406 |
+
return x.transpose(1, 2)
|
407 |
+
|
408 |
+
|
409 |
+
class ConformerFeedForward(nn.Module):
|
410 |
+
"""
|
411 |
+
Conformer Feed Forward module.
|
412 |
+
"""
|
413 |
+
|
414 |
+
def __init__(self, d_model: int, d_ff: int, use_bias=True):
|
415 |
+
super().__init__()
|
416 |
+
self.linear1 = nn.Linear(d_model, d_ff, bias=use_bias)
|
417 |
+
self.activation = nn.SiLU()
|
418 |
+
self.linear2 = nn.Linear(d_ff, d_model, bias=use_bias)
|
419 |
+
|
420 |
+
def forward(self, x: Tensor) -> Tensor:
|
421 |
+
return self.linear2(self.activation(self.linear1(x)))
|
422 |
+
|
423 |
+
|
424 |
+
class ConformerLayer(nn.Module):
|
425 |
+
"""
|
426 |
+
Conformer Layer module.
|
427 |
+
This module combines several submodules including feed forward networks,
|
428 |
+
depthwise separable convolution, and multi-head self-attention
|
429 |
+
to form a single Conformer block.
|
430 |
+
"""
|
431 |
+
|
432 |
+
def __init__(
|
433 |
+
self,
|
434 |
+
d_model: int,
|
435 |
+
d_ff: int,
|
436 |
+
self_attention_model: str,
|
437 |
+
n_heads: int = 16,
|
438 |
+
conv_kernel_size: int = 31,
|
439 |
+
flash_attn: bool = False,
|
440 |
+
):
|
441 |
+
super().__init__()
|
442 |
+
self.fc_factor = 0.5
|
443 |
+
self.norm_feed_forward1 = nn.LayerNorm(d_model)
|
444 |
+
self.feed_forward1 = ConformerFeedForward(d_model=d_model, d_ff=d_ff)
|
445 |
+
self.norm_conv = nn.LayerNorm(d_model)
|
446 |
+
self.conv = ConformerConvolution(
|
447 |
+
d_model=d_model,
|
448 |
+
kernel_size=conv_kernel_size,
|
449 |
+
)
|
450 |
+
self.norm_self_att = nn.LayerNorm(d_model)
|
451 |
+
if self_attention_model == "rotary":
|
452 |
+
self.self_attn: nn.Module = RotaryPositionMultiHeadAttention(
|
453 |
+
n_head=n_heads,
|
454 |
+
n_feat=d_model,
|
455 |
+
flash_attn=flash_attn,
|
456 |
+
)
|
457 |
+
else:
|
458 |
+
assert not flash_attn, "Not supported flash_attn for rel_pos"
|
459 |
+
self.self_attn = RelPositionMultiHeadAttention(
|
460 |
+
n_head=n_heads,
|
461 |
+
n_feat=d_model,
|
462 |
+
)
|
463 |
+
self.norm_feed_forward2 = nn.LayerNorm(d_model)
|
464 |
+
self.feed_forward2 = ConformerFeedForward(d_model=d_model, d_ff=d_ff)
|
465 |
+
self.norm_out = nn.LayerNorm(d_model)
|
466 |
+
|
467 |
+
def forward(
|
468 |
+
self,
|
469 |
+
x: Tensor,
|
470 |
+
pos_emb: Union[Tensor, List[Tensor]],
|
471 |
+
att_mask: Optional[Tensor] = None,
|
472 |
+
pad_mask: Optional[Tensor] = None,
|
473 |
+
) -> Tensor:
|
474 |
+
residual = x
|
475 |
+
x = self.norm_feed_forward1(x)
|
476 |
+
x = self.feed_forward1(x)
|
477 |
+
residual = residual + x * self.fc_factor
|
478 |
+
|
479 |
+
x = self.norm_self_att(residual)
|
480 |
+
x = self.self_attn(x, x, x, pos_emb, mask=att_mask)
|
481 |
+
residual = residual + x
|
482 |
+
|
483 |
+
x = self.norm_conv(residual)
|
484 |
+
x = self.conv(x, pad_mask=pad_mask)
|
485 |
+
residual = residual + x
|
486 |
+
|
487 |
+
x = self.norm_feed_forward2(residual)
|
488 |
+
x = self.feed_forward2(x)
|
489 |
+
residual = residual + x * self.fc_factor
|
490 |
+
|
491 |
+
x = self.norm_out(residual)
|
492 |
+
return x
|
493 |
+
|
494 |
+
|
495 |
+
class ConformerEncoder(nn.Module):
|
496 |
+
"""
|
497 |
+
Conformer Encoder module.
|
498 |
+
This module encapsulates the entire Conformer encoder architecture,
|
499 |
+
consisting of a StridingSubsampling layer, positional embeddings, and
|
500 |
+
a stack of Conformer Layers.
|
501 |
+
It serves as the main component responsible for processing speech features.
|
502 |
+
"""
|
503 |
+
|
504 |
+
def __init__(
|
505 |
+
self,
|
506 |
+
feat_in: int = 64,
|
507 |
+
n_layers: int = 16,
|
508 |
+
d_model: int = 768,
|
509 |
+
subsampling_factor: int = 4,
|
510 |
+
ff_expansion_factor: int = 4,
|
511 |
+
self_attention_model: str = "rotary",
|
512 |
+
n_heads: int = 16,
|
513 |
+
pos_emb_max_len: int = 5000,
|
514 |
+
conv_kernel_size: int = 31,
|
515 |
+
flash_attn: bool = False,
|
516 |
+
):
|
517 |
+
super().__init__()
|
518 |
+
self.feat_in = feat_in
|
519 |
+
assert self_attention_model in [
|
520 |
+
"rotary",
|
521 |
+
"rel_pos",
|
522 |
+
], f"Not supported attn = {self_attention_model}"
|
523 |
+
|
524 |
+
self.pre_encode = StridingSubsampling(
|
525 |
+
subsampling_factor=subsampling_factor,
|
526 |
+
feat_in=feat_in,
|
527 |
+
feat_out=d_model,
|
528 |
+
conv_channels=d_model,
|
529 |
+
)
|
530 |
+
|
531 |
+
if self_attention_model == "rotary":
|
532 |
+
self.pos_enc: nn.Module = RotaryPositionalEmbedding(
|
533 |
+
d_model // n_heads, pos_emb_max_len
|
534 |
+
)
|
535 |
+
else:
|
536 |
+
self.pos_enc = RelPositionalEmbedding(d_model, pos_emb_max_len)
|
537 |
+
|
538 |
+
self.layers = nn.ModuleList()
|
539 |
+
for _ in range(n_layers):
|
540 |
+
layer = ConformerLayer(
|
541 |
+
d_model=d_model,
|
542 |
+
d_ff=d_model * ff_expansion_factor,
|
543 |
+
self_attention_model=self_attention_model,
|
544 |
+
n_heads=n_heads,
|
545 |
+
conv_kernel_size=conv_kernel_size,
|
546 |
+
flash_attn=flash_attn,
|
547 |
+
)
|
548 |
+
self.layers.append(layer)
|
549 |
+
|
550 |
+
self.pos_enc.extend_pe(pos_emb_max_len, next(self.parameters()).device)
|
551 |
+
|
552 |
+
def input_example(
|
553 |
+
self,
|
554 |
+
batch_size: int = 1,
|
555 |
+
seqlen: int = 200,
|
556 |
+
):
|
557 |
+
device = next(self.parameters()).device
|
558 |
+
features = torch.zeros(batch_size, self.feat_in, seqlen)
|
559 |
+
feature_lengths = torch.full([batch_size], features.shape[-1])
|
560 |
+
return features.float().to(device), feature_lengths.to(device)
|
561 |
+
|
562 |
+
def input_names(self):
|
563 |
+
return ["audio_signal", "length"]
|
564 |
+
|
565 |
+
def output_names(self):
|
566 |
+
return ["encoded", "encoded_len"]
|
567 |
+
|
568 |
+
def dynamic_axes(self):
|
569 |
+
return {
|
570 |
+
"audio_signal": {0: "batch_size", 2: "seq_len"},
|
571 |
+
"length": {0: "batch_size"},
|
572 |
+
"encoded": {0: "batch_size", 1: "seq_len"},
|
573 |
+
"encoded_len": {0: "batch_size"},
|
574 |
+
}
|
575 |
+
|
576 |
+
def forward(self, audio_signal: Tensor, length: Tensor) -> Tuple[Tensor, Tensor]:
|
577 |
+
audio_signal, length = self.pre_encode(
|
578 |
+
x=audio_signal.transpose(1, 2), lengths=length
|
579 |
+
)
|
580 |
+
|
581 |
+
max_len = audio_signal.size(1)
|
582 |
+
audio_signal, pos_emb = self.pos_enc(x=audio_signal)
|
583 |
+
|
584 |
+
pad_mask = torch.arange(0, max_len, device=audio_signal.device).expand(
|
585 |
+
length.size(0), -1
|
586 |
+
) < length.unsqueeze(-1)
|
587 |
+
|
588 |
+
att_mask = None
|
589 |
+
if audio_signal.shape[0] > 1:
|
590 |
+
att_mask = pad_mask.unsqueeze(1).repeat([1, max_len, 1])
|
591 |
+
att_mask = torch.logical_and(att_mask, att_mask.transpose(1, 2))
|
592 |
+
att_mask = ~att_mask
|
593 |
+
|
594 |
+
pad_mask = ~pad_mask
|
595 |
+
|
596 |
+
for layer in self.layers:
|
597 |
+
audio_signal = layer(
|
598 |
+
x=audio_signal,
|
599 |
+
pos_emb=pos_emb,
|
600 |
+
att_mask=att_mask,
|
601 |
+
pad_mask=pad_mask,
|
602 |
+
)
|
603 |
+
|
604 |
+
return audio_signal.transpose(1, 2), length
|
gigaam_transformers.py
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Optional, Union, Tuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torchaudio
|
7 |
+
from .encoder import ConformerEncoder
|
8 |
+
from torch import Tensor
|
9 |
+
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2Processor
|
10 |
+
from transformers.configuration_utils import PretrainedConfig
|
11 |
+
from transformers.feature_extraction_sequence_utils import \
|
12 |
+
SequenceFeatureExtractor
|
13 |
+
from transformers.feature_extraction_utils import BatchFeature
|
14 |
+
from transformers.modeling_outputs import CausalLMOutput, Seq2SeqLMOutput
|
15 |
+
from transformers.modeling_utils import PreTrainedModel
|
16 |
+
|
17 |
+
|
18 |
+
class GigaAMCTC(nn.Module):
|
19 |
+
"""
|
20 |
+
GigaAM-CTC model
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, config_encoder, config_head):
|
24 |
+
super().__init__()
|
25 |
+
self.encoder = ConformerEncoder(**config_encoder)
|
26 |
+
self.head = CTCHead(**config_head)
|
27 |
+
|
28 |
+
def forward(self, input_features: Tensor, input_lengths: Tensor) -> Tensor:
|
29 |
+
encoded, encoded_lengths = self.encoder(input_features, input_lengths)
|
30 |
+
logits = self.head(encoded)
|
31 |
+
return logits, encoded_lengths
|
32 |
+
|
33 |
+
|
34 |
+
class GigaAMRNNT(nn.Module):
|
35 |
+
"""
|
36 |
+
GigaAM-RNNT model
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(self, config_encoder, config_head):
|
40 |
+
super().__init__()
|
41 |
+
self.encoder = ConformerEncoder(**config_encoder)
|
42 |
+
self.head = RNNTHead(**config_head)
|
43 |
+
|
44 |
+
def forward(self, input_features: Tensor, input_lengths: Tensor, targets: Tensor, target_lengths: Tensor) -> Tensor:
|
45 |
+
encoded, encoded_lengths = self.encoder(input_features, input_lengths)
|
46 |
+
# During training, loss must be computed, so decoder forward is necessary
|
47 |
+
decoder_out, target_lengths, states = self.head.decoder(targets=targets, target_length=target_lengths)
|
48 |
+
joint = self.head.joint(encoder_outputs=encoded, decoder_outputs=decoder_out)
|
49 |
+
# loss = self.loss(
|
50 |
+
# log_probs=joint, targets=targets, input_lengths=encoded_lengths, target_lengths=target_lengths
|
51 |
+
# )
|
52 |
+
|
53 |
+
return joint, encoded_lengths
|
54 |
+
|
55 |
+
|
56 |
+
class CTCHead(nn.Module):
|
57 |
+
"""
|
58 |
+
CTC Head module for Connectionist Temporal Classification.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, feat_in: int, num_classes: int):
|
62 |
+
super().__init__()
|
63 |
+
self.decoder_layers = nn.Sequential(
|
64 |
+
nn.Conv1d(feat_in, num_classes, kernel_size=1)
|
65 |
+
)
|
66 |
+
|
67 |
+
def forward(self, encoder_output: Tensor) -> Tensor:
|
68 |
+
# B x C x T
|
69 |
+
return self.decoder_layers(encoder_output)
|
70 |
+
|
71 |
+
|
72 |
+
class RNNTJoint(nn.Module):
|
73 |
+
"""
|
74 |
+
RNN-Transducer Joint Network Module.
|
75 |
+
This module combines the outputs of the encoder and the prediction network using
|
76 |
+
a linear transformation followed by ReLU activation and another linear projection.
|
77 |
+
"""
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self, enc_hidden: int, pred_hidden: int, joint_hidden: int, num_classes: int
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
self.enc_hidden = enc_hidden
|
84 |
+
self.pred_hidden = pred_hidden
|
85 |
+
self.pred = nn.Linear(pred_hidden, joint_hidden)
|
86 |
+
self.enc = nn.Linear(enc_hidden, joint_hidden)
|
87 |
+
self.joint_net = nn.Sequential(nn.ReLU(), nn.Linear(joint_hidden, num_classes))
|
88 |
+
|
89 |
+
def joint(self, encoder_out: Tensor, decoder_out: Tensor) -> Tensor:
|
90 |
+
"""
|
91 |
+
Combine the encoder and prediction network outputs into a joint representation.
|
92 |
+
"""
|
93 |
+
enc = self.enc(encoder_out).unsqueeze(2)
|
94 |
+
pred = self.pred(decoder_out).unsqueeze(1)
|
95 |
+
return self.joint_net(enc + pred)
|
96 |
+
|
97 |
+
def input_example(self):
|
98 |
+
device = next(self.parameters()).device
|
99 |
+
enc = torch.zeros(1, self.enc_hidden, 1)
|
100 |
+
dec = torch.zeros(1, self.pred_hidden, 1)
|
101 |
+
return enc.float().to(device), dec.float().to(device)
|
102 |
+
|
103 |
+
def input_names(self):
|
104 |
+
return ["enc", "dec"]
|
105 |
+
|
106 |
+
def output_names(self):
|
107 |
+
return ["joint"]
|
108 |
+
|
109 |
+
def forward(self, enc: Tensor, dec: Tensor) -> Tensor:
|
110 |
+
return self.joint(enc.transpose(1, 2), dec.transpose(1, 2))
|
111 |
+
|
112 |
+
|
113 |
+
class RNNTDecoder(nn.Module):
|
114 |
+
"""
|
115 |
+
RNN-Transducer Decoder Module.
|
116 |
+
This module handles the prediction network part of the RNN-Transducer architecture.
|
117 |
+
"""
|
118 |
+
|
119 |
+
def __init__(self, pred_hidden: int, pred_rnn_layers: int, num_classes: int):
|
120 |
+
super().__init__()
|
121 |
+
self.blank_id = num_classes - 1
|
122 |
+
self.pred_hidden = pred_hidden
|
123 |
+
self.embed = nn.Embedding(num_classes, pred_hidden, padding_idx=self.blank_id)
|
124 |
+
self.lstm = nn.LSTM(pred_hidden, pred_hidden, pred_rnn_layers)
|
125 |
+
|
126 |
+
def predict(
|
127 |
+
self,
|
128 |
+
x: Optional[Tensor],
|
129 |
+
state: Optional[Tensor],
|
130 |
+
batch_size: int = 1,
|
131 |
+
) -> Tuple[Tensor, Tensor]:
|
132 |
+
"""
|
133 |
+
Make predictions based on the current input and previous states.
|
134 |
+
If no input is provided, use zeros as the initial input.
|
135 |
+
"""
|
136 |
+
if x is not None:
|
137 |
+
emb: Tensor = self.embed(x)
|
138 |
+
else:
|
139 |
+
emb = torch.zeros(
|
140 |
+
(batch_size, 1, self.pred_hidden), device=next(self.parameters()).device
|
141 |
+
)
|
142 |
+
g, hid = self.lstm(emb.transpose(0, 1), state)
|
143 |
+
return g.transpose(0, 1), hid
|
144 |
+
|
145 |
+
def input_example(self):
|
146 |
+
device = next(self.parameters()).device
|
147 |
+
label = torch.tensor([[0]]).to(device)
|
148 |
+
hidden_h = torch.zeros(1, 1, self.pred_hidden).to(device)
|
149 |
+
hidden_c = torch.zeros(1, 1, self.pred_hidden).to(device)
|
150 |
+
return label, hidden_h, hidden_c
|
151 |
+
|
152 |
+
def input_names(self):
|
153 |
+
return ["x", "h", "c"]
|
154 |
+
|
155 |
+
def output_names(self):
|
156 |
+
return ["dec", "h", "c"]
|
157 |
+
|
158 |
+
def forward(self, x: Tensor, h: Tensor, c: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
|
159 |
+
"""
|
160 |
+
ONNX-specific forward with x, state = (h, c) -> x, h, c.
|
161 |
+
"""
|
162 |
+
emb = self.embed(x)
|
163 |
+
g, (h, c) = self.lstm(emb.transpose(0, 1), (h, c))
|
164 |
+
return g.transpose(0, 1), h, c
|
165 |
+
|
166 |
+
|
167 |
+
class RNNTHead(nn.Module):
|
168 |
+
"""
|
169 |
+
RNN-Transducer Head Module.
|
170 |
+
This module combines the decoder and joint network components of the RNN-Transducer architecture.
|
171 |
+
"""
|
172 |
+
|
173 |
+
def __init__(self, decoder: Dict[str, int], joint: Dict[str, int]):
|
174 |
+
super().__init__()
|
175 |
+
self.decoder = RNNTDecoder(**decoder)
|
176 |
+
self.joint = RNNTJoint(**joint)
|
177 |
+
|
178 |
+
|
179 |
+
class GigaAMFeatureExtractor(SequenceFeatureExtractor):
|
180 |
+
"""
|
181 |
+
Feature extractor for GigaAM.
|
182 |
+
"""
|
183 |
+
model_input_names = ["input_features"]
|
184 |
+
|
185 |
+
def __init__(
|
186 |
+
self,
|
187 |
+
feature_size=64,
|
188 |
+
sampling_rate=16000,
|
189 |
+
padding_value=0.0,
|
190 |
+
chunk_length=30.0,
|
191 |
+
**kwargs,
|
192 |
+
):
|
193 |
+
super().__init__(
|
194 |
+
feature_size=feature_size,
|
195 |
+
sampling_rate=sampling_rate,
|
196 |
+
padding_value=padding_value,
|
197 |
+
chunk_length=chunk_length,
|
198 |
+
**kwargs,
|
199 |
+
)
|
200 |
+
self.hop_length = sampling_rate // 100
|
201 |
+
self.n_samples = chunk_length * sampling_rate
|
202 |
+
self.featurizer = torchaudio.transforms.MelSpectrogram(
|
203 |
+
sample_rate=sampling_rate,
|
204 |
+
n_fft=sampling_rate // 40,
|
205 |
+
win_length=sampling_rate // 40,
|
206 |
+
hop_length=self.hop_length,
|
207 |
+
n_mels=feature_size,
|
208 |
+
)
|
209 |
+
|
210 |
+
def to_dict(self) -> Dict[str, Union[str, int, Dict]]:
|
211 |
+
dictionary = super().to_dict()
|
212 |
+
|
213 |
+
if "featurizer" in dictionary:
|
214 |
+
del dictionary["featurizer"]
|
215 |
+
dictionary["hop_length"] = self.hop_length
|
216 |
+
dictionary["n_samples"] = self.n_samples
|
217 |
+
return dictionary
|
218 |
+
|
219 |
+
def out_len(self, input_lengths: Tensor) -> Tensor:
|
220 |
+
"""
|
221 |
+
Calculates the output length after the feature extraction process.
|
222 |
+
"""
|
223 |
+
return input_lengths.div(self.hop_length, rounding_mode="floor").add(1).long()
|
224 |
+
|
225 |
+
def __call__(
|
226 |
+
self,
|
227 |
+
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
|
228 |
+
sampling_rate: Optional[int] = None,
|
229 |
+
padding: str = "max_length",
|
230 |
+
**kwargs,
|
231 |
+
):
|
232 |
+
is_batched_numpy = (
|
233 |
+
isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
|
234 |
+
)
|
235 |
+
if is_batched_numpy and len(raw_speech.shape) > 2:
|
236 |
+
raise ValueError(
|
237 |
+
f"Only mono-channel audio is supported for input to {self}"
|
238 |
+
)
|
239 |
+
is_batched = is_batched_numpy or (
|
240 |
+
isinstance(raw_speech, (list, tuple))
|
241 |
+
and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
|
242 |
+
)
|
243 |
+
|
244 |
+
if is_batched:
|
245 |
+
raw_speech = [
|
246 |
+
np.asarray([speech], dtype=np.float32).T for speech in raw_speech
|
247 |
+
]
|
248 |
+
elif not is_batched and not isinstance(raw_speech, np.ndarray):
|
249 |
+
raw_speech = np.asarray(raw_speech, dtype=np.float32)
|
250 |
+
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(
|
251 |
+
np.float64
|
252 |
+
):
|
253 |
+
raw_speech = raw_speech.astype(np.float32)
|
254 |
+
|
255 |
+
# always return batch
|
256 |
+
if not is_batched:
|
257 |
+
raw_speech = [np.asarray([raw_speech]).T]
|
258 |
+
|
259 |
+
input_lengths = torch.tensor([len(speech) for speech in raw_speech])
|
260 |
+
|
261 |
+
batched_speech = BatchFeature({"input_features": raw_speech})
|
262 |
+
|
263 |
+
padded_inputs = self.pad(
|
264 |
+
batched_speech,
|
265 |
+
padding=padding,
|
266 |
+
max_length=self.n_samples,
|
267 |
+
truncation=False,
|
268 |
+
return_tensors="pt",
|
269 |
+
)
|
270 |
+
|
271 |
+
input_features = padded_inputs["input_features"].transpose(1, 2)
|
272 |
+
input_features = self.featurizer(input_features).squeeze(1)
|
273 |
+
input_features = torch.log(input_features.clamp_(1e-9, 1e9))
|
274 |
+
input_lengths = self.out_len(input_lengths)
|
275 |
+
|
276 |
+
return BatchFeature({"input_features": input_features, "input_lengths": input_lengths}, tensor_type="pt")
|
277 |
+
|
278 |
+
|
279 |
+
class GigaAMCTCTokenizer(Wav2Vec2CTCTokenizer):
|
280 |
+
"""
|
281 |
+
Char tokenizer for GigaAM-CTC model.
|
282 |
+
"""
|
283 |
+
def __init__(
|
284 |
+
self,
|
285 |
+
vocab_file,
|
286 |
+
unk_token="[BLANK]",
|
287 |
+
pad_token="[BLANK]",
|
288 |
+
bos_token=None,
|
289 |
+
eos_token=None,
|
290 |
+
word_delimiter_token=" ",
|
291 |
+
**kwargs,
|
292 |
+
):
|
293 |
+
super().__init__(
|
294 |
+
vocab_file=vocab_file,
|
295 |
+
unk_token=unk_token,
|
296 |
+
pad_token=pad_token,
|
297 |
+
bos_token=bos_token,
|
298 |
+
eos_token=eos_token,
|
299 |
+
word_delimiter_token=word_delimiter_token,
|
300 |
+
**kwargs,
|
301 |
+
)
|
302 |
+
|
303 |
+
|
304 |
+
class GigaAMProcessor(Wav2Vec2Processor):
|
305 |
+
feature_extractor_class = "GigaAMFeatureExtractor"
|
306 |
+
tokenizer_class = "GigaAMCTCTokenizer"
|
307 |
+
|
308 |
+
def __init__(self, feature_extractor, tokenizer):
|
309 |
+
# super().__init__(feature_extractor, tokenizer)
|
310 |
+
self.feature_extractor = feature_extractor
|
311 |
+
self.tokenizer = tokenizer
|
312 |
+
self.current_processor = self.feature_extractor
|
313 |
+
self._in_target_context_manager = False
|
314 |
+
|
315 |
+
@classmethod
|
316 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
317 |
+
feature_extractor = GigaAMFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
318 |
+
tokenizer = GigaAMCTCTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
319 |
+
|
320 |
+
return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)
|
321 |
+
|
322 |
+
|
323 |
+
class GigaAMConfig(PretrainedConfig):
|
324 |
+
model_type = "gigaam-ctc"
|
325 |
+
|
326 |
+
def __init__(self, **kwargs):
|
327 |
+
super().__init__(**kwargs)
|
328 |
+
|
329 |
+
|
330 |
+
class GigaAMCTCHF(PreTrainedModel):
|
331 |
+
"""
|
332 |
+
GigaAM-CTC model for transformers
|
333 |
+
"""
|
334 |
+
config_class = GigaAMConfig
|
335 |
+
base_model_prefix = "gigaamctc"
|
336 |
+
main_input_name = "input_features"
|
337 |
+
|
338 |
+
def __init__(self, config: GigaAMConfig):
|
339 |
+
super().__init__(config)
|
340 |
+
self.model = GigaAMCTC(config.encoder, config.head)
|
341 |
+
|
342 |
+
def forward(self, input_features, input_lengths, labels=None, **kwargs):
|
343 |
+
|
344 |
+
# B x C x T
|
345 |
+
logits, encoded_lengths = self.model(input_features, input_lengths)
|
346 |
+
# B x C x T -> B x T x C -> T x B x C
|
347 |
+
log_probs = torch.log_softmax(
|
348 |
+
logits.transpose(1, 2), dim=-1, dtype=torch.float32
|
349 |
+
).transpose(0, 1)
|
350 |
+
|
351 |
+
loss = None
|
352 |
+
if labels is not None:
|
353 |
+
labels_mask = labels >= 0
|
354 |
+
target_lengths = labels_mask.sum(-1)
|
355 |
+
flattened_targets = labels.masked_select(labels_mask)
|
356 |
+
|
357 |
+
loss = nn.functional.ctc_loss(
|
358 |
+
log_probs,
|
359 |
+
flattened_targets,
|
360 |
+
encoded_lengths,
|
361 |
+
target_lengths,
|
362 |
+
blank=self.config.blank_id,
|
363 |
+
zero_infinity=True,
|
364 |
+
)
|
365 |
+
|
366 |
+
return CausalLMOutput(loss=loss, logits=logits.transpose(1, 2))
|
367 |
+
|
368 |
+
|
369 |
+
class GigaAMRNNTHF(PreTrainedModel):
|
370 |
+
"""
|
371 |
+
GigaAM-RNNT model for transformers
|
372 |
+
"""
|
373 |
+
config_class = GigaAMConfig
|
374 |
+
base_model_prefix = "gigaamrnnt"
|
375 |
+
main_input_name = "input_features"
|
376 |
+
|
377 |
+
def __init__(self, config: GigaAMConfig):
|
378 |
+
super().__init__(config)
|
379 |
+
self.model = GigaAMRNNT(config.encoder, config.head)
|
380 |
+
|
381 |
+
def forward(self, input_features, input_lengths, labels=None, **kwargs):
|
382 |
+
|
383 |
+
# B x C x T
|
384 |
+
encoder_out, encoded_lengths = self.model.encoder(input_features, input_lengths)
|
385 |
+
encoder_out = encoder_out.transpose(1, 2)
|
386 |
+
batch_size = encoder_out.shape[0]
|
387 |
+
|
388 |
+
loss = None
|
389 |
+
if labels is not None:
|
390 |
+
labels = labels.to(torch.int32)
|
391 |
+
labels_mask = labels >= 0
|
392 |
+
target_lengths = labels_mask.sum(-1).to(torch.int32)
|
393 |
+
|
394 |
+
hidden_states = torch.zeros((self.config.head["decoder"]["pred_rnn_layers"], batch_size, self.model.head.decoder.pred_hidden), device=encoder_out.device)
|
395 |
+
hidden_c = torch.zeros((self.config.head["decoder"]["pred_rnn_layers"], batch_size, self.model.head.decoder.pred_hidden), device=encoder_out.device)
|
396 |
+
plus_one_dim = self.config.blank_id * torch.ones((batch_size, 1), dtype=torch.int32, device=encoder_out.device)
|
397 |
+
|
398 |
+
decoder_out, h, c = self.model.head.decoder(torch.cat((plus_one_dim, labels), dim=1), hidden_states, hidden_c)
|
399 |
+
|
400 |
+
joint = self.model.head.joint.joint(encoder_out, decoder_out)
|
401 |
+
loss = torchaudio.functional.rnnt_loss(
|
402 |
+
logits=joint,
|
403 |
+
targets=labels,
|
404 |
+
logit_lengths=encoded_lengths,
|
405 |
+
target_lengths=target_lengths,
|
406 |
+
blank=self.config.blank_id,
|
407 |
+
)
|
408 |
+
|
409 |
+
return Seq2SeqLMOutput(loss=loss, logits=encoder_out.transpose(1, 2))
|
410 |
+
|
411 |
+
def _greedy_decode(self, x: Tensor, seqlen: Tensor) -> str:
|
412 |
+
"""
|
413 |
+
Internal helper function for performing greedy decoding on a single sequence.
|
414 |
+
"""
|
415 |
+
hyp: List[int] = []
|
416 |
+
dec_state: Optional[Tensor] = None
|
417 |
+
last_label: Optional[Tensor] = None
|
418 |
+
for t in range(seqlen):
|
419 |
+
f = x[t, :, :].unsqueeze(1)
|
420 |
+
not_blank = True
|
421 |
+
new_symbols = 0
|
422 |
+
while not_blank and new_symbols < self.config.max_symbols:
|
423 |
+
g, hidden = self.model.head.decoder.predict(last_label, dec_state)
|
424 |
+
k = self.model.head.joint.joint(f, g)[0, 0, 0, :].argmax(0).item()
|
425 |
+
if k == self.config.blank_id:
|
426 |
+
not_blank = False
|
427 |
+
else:
|
428 |
+
hyp.append(k)
|
429 |
+
dec_state = hidden
|
430 |
+
last_label = torch.tensor([[hyp[-1]]]).to(x.device)
|
431 |
+
new_symbols += 1
|
432 |
+
|
433 |
+
return torch.tensor([hyp], dtype=torch.int32)
|
434 |
+
|
435 |
+
@torch.inference_mode()
|
436 |
+
def generate(self, input_features: Tensor, input_lengths: Tensor, **kwargs) -> torch.Tensor:
|
437 |
+
"""
|
438 |
+
Decode the output of an RNN-T model into a list of hypotheses.
|
439 |
+
"""
|
440 |
+
encoder_out, encoded_lengths = self.model.encoder(input_features, input_lengths)
|
441 |
+
encoder_out = encoder_out.transpose(1, 2)
|
442 |
+
b = encoder_out.shape[0]
|
443 |
+
preds = []
|
444 |
+
for i in range(b):
|
445 |
+
inseq = encoder_out[i, :, :].unsqueeze(1)
|
446 |
+
preds.append(self._greedy_decode(inseq, encoded_lengths[i]))
|
447 |
+
return torch.cat(preds, dim=1)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chunk_length": 30,
|
3 |
+
"feature_extractor_type": "GigaAMFeatureExtractor",
|
4 |
+
"feature_extractor_class": "GigaAMFeatureExtractor",
|
5 |
+
"feature_size": 64,
|
6 |
+
"hop_length": 160,
|
7 |
+
"n_samples": 480000,
|
8 |
+
"padding_side": "right",
|
9 |
+
"padding_value": 0.0,
|
10 |
+
"return_attention_mask": true,
|
11 |
+
"sampling_rate": 16000,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoFeatureExtractor": "gigaam_transformers.GigaAMFeatureExtractor",
|
14 |
+
"AutoProcessor": "gigaam_transformers.GigaAMProcessor"
|
15 |
+
},
|
16 |
+
"processor_class": "GigaAMProcessor",
|
17 |
+
"model_type": "gigaam-rnnt"
|
18 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16888332b279f5296b411f5bbe5385f20448d261b2c9a6425e1a83026efb2018
|
3 |
+
size 935306114
|
special_tokens_map.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "[BLANK]",
|
3 |
+
"unk_token": "[BLANK]"
|
4 |
+
}
|
5 |
+
|
tokenizer_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"33": {
|
4 |
+
"content": "[BLANK]",
|
5 |
+
"lstrip": true,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": true,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"bos_token": null,
|
13 |
+
"clean_up_tokenization_spaces": false,
|
14 |
+
"do_lower_case": false,
|
15 |
+
"eos_token": null,
|
16 |
+
"model_max_length": 1000,
|
17 |
+
"pad_token": "[BLANK]",
|
18 |
+
"replace_word_delimiter_char": " ",
|
19 |
+
"target_lang": null,
|
20 |
+
"tokenizer_class": "GigaAMTokenizer",
|
21 |
+
"unk_token": "[BLANK]",
|
22 |
+
"word_delimiter_token": " ",
|
23 |
+
"auto_map": {
|
24 |
+
"AutoTokenizer": ["gigaam_transformers.GigaAMTokenizer", null]
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
vocab.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
" ": 0,
|
3 |
+
"[BLANK]": 33,
|
4 |
+
"а": 1,
|
5 |
+
"б": 2,
|
6 |
+
"в": 3,
|
7 |
+
"г": 4,
|
8 |
+
"д": 5,
|
9 |
+
"е": 6,
|
10 |
+
"ж": 7,
|
11 |
+
"з": 8,
|
12 |
+
"и": 9,
|
13 |
+
"й": 10,
|
14 |
+
"к": 11,
|
15 |
+
"л": 12,
|
16 |
+
"м": 13,
|
17 |
+
"н": 14,
|
18 |
+
"о": 15,
|
19 |
+
"п": 16,
|
20 |
+
"р": 17,
|
21 |
+
"с": 18,
|
22 |
+
"т": 19,
|
23 |
+
"у": 20,
|
24 |
+
"ф": 21,
|
25 |
+
"х": 22,
|
26 |
+
"ц": 23,
|
27 |
+
"ч": 24,
|
28 |
+
"ш": 25,
|
29 |
+
"щ": 26,
|
30 |
+
"ъ": 27,
|
31 |
+
"ы": 28,
|
32 |
+
"ь": 29,
|
33 |
+
"э": 30,
|
34 |
+
"ю": 31,
|
35 |
+
"я": 32
|
36 |
+
}
|
37 |
+
|