File size: 15,990 Bytes
9b9aeff
 
 
 
 
 
 
 
8d2bbab
9b9aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4f890
9b9aeff
5a4f890
9b9aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a4f890
9b9aeff
 
 
 
 
 
 
 
 
 
 
5a4f890
9b9aeff
 
 
 
 
a3fc5de
9b9aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4cbc9d
9b9aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27c2b34
9b9aeff
 
 
 
 
 
 
 
 
 
 
 
 
8d2bbab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
from typing import Dict, List, Optional, Union, Tuple

import numpy as np
import torch
import torch.nn as nn
import torchaudio
from .encoder import ConformerEncoder
from torch import Tensor
from torch.nn.utils.rnn import pad_sequence
from transformers import Wav2Vec2CTCTokenizer, Wav2Vec2Processor
from transformers.configuration_utils import PretrainedConfig
from transformers.feature_extraction_sequence_utils import \
    SequenceFeatureExtractor
from transformers.feature_extraction_utils import BatchFeature
from transformers.modeling_outputs import CausalLMOutput, Seq2SeqLMOutput
from transformers.modeling_utils import PreTrainedModel


class GigaAMCTC(nn.Module):
    """
    GigaAM-CTC model
    """

    def __init__(self, config_encoder, config_head):
        super().__init__()
        self.encoder = ConformerEncoder(**config_encoder)
        self.head = CTCHead(**config_head)

    def forward(self, input_features: Tensor, input_lengths: Tensor) -> Tensor:
        encoded, encoded_lengths = self.encoder(input_features, input_lengths)
        logits = self.head(encoded)
        return logits, encoded_lengths


class GigaAMRNNT(nn.Module):
    """
    GigaAM-RNNT model
    """

    def __init__(self, config_encoder, config_head):
        super().__init__()
        self.encoder = ConformerEncoder(**config_encoder)
        self.head = RNNTHead(**config_head)

    def forward(self, input_features: Tensor, input_lengths: Tensor, targets: Tensor, target_lengths: Tensor) -> Tensor:
        encoded, encoded_lengths = self.encoder(input_features, input_lengths)
        # During training, loss must be computed, so decoder forward is necessary
        decoder_out, target_lengths, states = self.head.decoder(targets=targets, target_length=target_lengths)
        joint = self.head.joint(encoder_outputs=encoded, decoder_outputs=decoder_out)
        # loss = self.loss(
        #     log_probs=joint, targets=targets, input_lengths=encoded_lengths, target_lengths=target_lengths
        # )
        
        return joint, encoded_lengths


class CTCHead(nn.Module):
    """
    CTC Head module for Connectionist Temporal Classification.
    """

    def __init__(self, feat_in: int, num_classes: int):
        super().__init__()
        self.decoder_layers = nn.Sequential(
            nn.Conv1d(feat_in, num_classes, kernel_size=1)
        )

    def forward(self, encoder_output: Tensor) -> Tensor:
        # B x C x T
        return self.decoder_layers(encoder_output)


class RNNTJoint(nn.Module):
    """
    RNN-Transducer Joint Network Module.
    This module combines the outputs of the encoder and the prediction network using
    a linear transformation followed by ReLU activation and another linear projection.
    """

    def __init__(
        self, enc_hidden: int, pred_hidden: int, joint_hidden: int, num_classes: int
    ):
        super().__init__()
        self.enc_hidden = enc_hidden
        self.pred_hidden = pred_hidden
        self.pred = nn.Linear(pred_hidden, joint_hidden)
        self.enc = nn.Linear(enc_hidden, joint_hidden)
        self.joint_net = nn.Sequential(nn.ReLU(), nn.Linear(joint_hidden, num_classes))

    def joint(self, encoder_out: Tensor, decoder_out: Tensor) -> Tensor:
        """
        Combine the encoder and prediction network outputs into a joint representation.
        """
        enc = self.enc(encoder_out).unsqueeze(2)
        pred = self.pred(decoder_out).unsqueeze(1)
        return self.joint_net(enc + pred)

    def input_example(self):
        device = next(self.parameters()).device
        enc = torch.zeros(1, self.enc_hidden, 1)
        dec = torch.zeros(1, self.pred_hidden, 1)
        return enc.float().to(device), dec.float().to(device)

    def input_names(self):
        return ["enc", "dec"]

    def output_names(self):
        return ["joint"]

    def forward(self, enc: Tensor, dec: Tensor) -> Tensor:
        return self.joint(enc.transpose(1, 2), dec.transpose(1, 2))


class RNNTDecoder(nn.Module):
    """
    RNN-Transducer Decoder Module.
    This module handles the prediction network part of the RNN-Transducer architecture.
    """

    def __init__(self, pred_hidden: int, pred_rnn_layers: int, num_classes: int):
        super().__init__()
        self.blank_id = num_classes - 1
        self.pred_hidden = pred_hidden
        self.embed = nn.Embedding(num_classes, pred_hidden, padding_idx=self.blank_id)
        self.lstm = nn.LSTM(pred_hidden, pred_hidden, pred_rnn_layers)

    def predict(
        self,
        x: Optional[Tensor],
        state: Optional[Tensor],
        batch_size: int = 1,
    ) -> Tuple[Tensor, Tensor]:
        """
        Make predictions based on the current input and previous states.
        If no input is provided, use zeros as the initial input.
        """
        if x is not None:
            emb: Tensor = self.embed(x)
        else:
            emb = torch.zeros(
                (batch_size, 1, self.pred_hidden), device=next(self.parameters()).device
            )
        g, hid = self.lstm(emb.transpose(0, 1), state)
        return g.transpose(0, 1), hid

    def input_example(self):
        device = next(self.parameters()).device
        label = torch.tensor([[0]]).to(device)
        hidden_h = torch.zeros(1, 1, self.pred_hidden).to(device)
        hidden_c = torch.zeros(1, 1, self.pred_hidden).to(device)
        return label, hidden_h, hidden_c

    def input_names(self):
        return ["x", "h", "c"]

    def output_names(self):
        return ["dec", "h", "c"]

    def forward(self, x: Tensor, h: Tensor, c: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
        """
        ONNX-specific forward with x, state = (h, c) -> x, h, c.
        """
        emb = self.embed(x)
        g, (h, c) = self.lstm(emb.transpose(0, 1), (h, c))
        return g.transpose(0, 1), h, c


class RNNTHead(nn.Module):
    """
    RNN-Transducer Head Module.
    This module combines the decoder and joint network components of the RNN-Transducer architecture.
    """

    def __init__(self, decoder: Dict[str, int], joint: Dict[str, int]):
        super().__init__()
        self.decoder = RNNTDecoder(**decoder)
        self.joint = RNNTJoint(**joint)


class GigaAMFeatureExtractor(SequenceFeatureExtractor):
    """
    Feature extractor for GigaAM.
    """
    model_input_names = ["input_features"]

    def __init__(
        self,
        feature_size=64,
        sampling_rate=16000,
        padding_value=0.0,
        chunk_length=30.0,
        **kwargs,
    ):
        super().__init__(
            feature_size=feature_size,
            sampling_rate=sampling_rate,
            padding_value=padding_value,
            chunk_length=chunk_length,
            **kwargs,
        )
        self.hop_length = sampling_rate // 100
        self.n_samples = chunk_length * sampling_rate
        self.featurizer = torchaudio.transforms.MelSpectrogram(
                sample_rate=sampling_rate,
                n_fft=sampling_rate // 40,
                win_length=sampling_rate // 40,
                hop_length=self.hop_length,
                n_mels=feature_size,
            )

    def to_dict(self) -> Dict[str, Union[str, int, Dict]]:
        dictionary = super().to_dict()

        if "featurizer" in dictionary:
            del dictionary["featurizer"]
        dictionary["hop_length"] = self.hop_length
        dictionary["n_samples"] = self.n_samples
        return dictionary

    def out_len(self, input_lengths: Tensor) -> Tensor:
        """
        Calculates the output length after the feature extraction process.
        """
        return input_lengths.div(self.hop_length, rounding_mode="floor").add(1).long()

    def __call__(
        self,
        raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
        sampling_rate: Optional[int] = None,
        padding: str = "max_length",
        **kwargs,
    ):
        is_batched_numpy = (
            isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
        )
        if is_batched_numpy and len(raw_speech.shape) > 2:
            raise ValueError(
                f"Only mono-channel audio is supported for input to {self}"
            )
        is_batched = is_batched_numpy or (
            isinstance(raw_speech, (list, tuple))
            and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
        )

        if is_batched:
            raw_speech = [
                np.asarray([speech], dtype=np.float32).T for speech in raw_speech
            ]
        elif not is_batched and not isinstance(raw_speech, np.ndarray):
            raw_speech = np.asarray(raw_speech, dtype=np.float32)
        elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(
            np.float64
        ):
            raw_speech = raw_speech.astype(np.float32)

        # always return batch
        if not is_batched:
            raw_speech = [np.asarray([raw_speech]).T]

        input_lengths = torch.tensor([len(speech) for speech in raw_speech])

        batched_speech = BatchFeature({"input_features": raw_speech})

        padded_inputs = self.pad(
            batched_speech,
            padding=padding,
            max_length=self.n_samples,
            truncation=False,
            return_tensors="pt",
        )

        input_features = padded_inputs["input_features"].transpose(1, 2)
        input_features = self.featurizer(input_features).squeeze(1)
        input_features = torch.log(input_features.clamp_(1e-9, 1e9))
        input_lengths = self.out_len(input_lengths)

        return BatchFeature({"input_features": input_features, "input_lengths": input_lengths}, tensor_type="pt")


class GigaAMTokenizer(Wav2Vec2CTCTokenizer):
    """
    Char tokenizer for GigaAM model.
    """
    def __init__(
        self,
        vocab_file,
        unk_token="[BLANK]",
        pad_token="[BLANK]",
        bos_token=None,
        eos_token=None,
        word_delimiter_token=" ",
        **kwargs,
    ):
        super().__init__(
            vocab_file=vocab_file,
            unk_token=unk_token,
            pad_token=pad_token,
            bos_token=bos_token,
            eos_token=eos_token,
            word_delimiter_token=word_delimiter_token,
            **kwargs,
        )


class GigaAMProcessor(Wav2Vec2Processor):
    feature_extractor_class = "GigaAMFeatureExtractor"
    tokenizer_class = "GigaAMTokenizer"

    def __init__(self, feature_extractor, tokenizer):
        # super().__init__(feature_extractor, tokenizer)
        self.feature_extractor = feature_extractor
        self.tokenizer = tokenizer
        self.current_processor = self.feature_extractor
        self._in_target_context_manager = False

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        feature_extractor = GigaAMFeatureExtractor.from_pretrained(pretrained_model_name_or_path, **kwargs)
        tokenizer = GigaAMTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)

        return cls(feature_extractor=feature_extractor, tokenizer=tokenizer)


class GigaAMConfig(PretrainedConfig):
    model_type = "gigaam"

    def __init__(self, **kwargs):
        super().__init__(**kwargs)


class GigaAMCTCHF(PreTrainedModel):
    """
    GigaAM-CTC model for transformers
    """
    config_class = GigaAMConfig
    base_model_prefix = "gigaamctc"
    main_input_name = "input_features"

    def __init__(self, config: GigaAMConfig):
        super().__init__(config)
        self.model = GigaAMCTC(config.encoder, config.head)

    def forward(self, input_features, input_lengths, labels=None, **kwargs):

        # B x C x T
        logits, encoded_lengths = self.model(input_features, input_lengths)
        # B x C x T -> B x T x C -> T x B x C
        log_probs = torch.log_softmax(
            logits.transpose(1, 2), dim=-1, dtype=torch.float32
        ).transpose(0, 1)

        loss = None
        if labels is not None:
            labels_mask = labels >= 0
            target_lengths = labels_mask.sum(-1)
            flattened_targets = labels.masked_select(labels_mask)

            loss = nn.functional.ctc_loss(
                log_probs,
                flattened_targets,
                encoded_lengths,
                target_lengths,
                blank=self.config.blank_id,
                zero_infinity=True,
            )

        return CausalLMOutput(loss=loss, logits=logits.transpose(1, 2))


class GigaAMRNNTHF(PreTrainedModel):
    """
    GigaAM-RNNT model for transformers
    """
    config_class = GigaAMConfig
    base_model_prefix = "gigaamrnnt"
    main_input_name = "input_features"

    def __init__(self, config: GigaAMConfig):
        super().__init__(config)
        self.model = GigaAMRNNT(config.encoder, config.head)

    def forward(self, input_features, input_lengths, labels=None, **kwargs):

        # B x C x T
        encoder_out, encoded_lengths = self.model.encoder(input_features, input_lengths)
        encoder_out = encoder_out.transpose(1, 2)
        batch_size = encoder_out.shape[0]

        loss = None
        if labels is not None:
            labels = labels.to(torch.int32)
            labels_mask = labels >= 0
            target_lengths = labels_mask.sum(-1).to(torch.int32)

            hidden_states = torch.zeros((self.config.head["decoder"]["pred_rnn_layers"], batch_size, self.model.head.decoder.pred_hidden), device=encoder_out.device)
            hidden_c = torch.zeros((self.config.head["decoder"]["pred_rnn_layers"], batch_size, self.model.head.decoder.pred_hidden), device=encoder_out.device)
            plus_one_dim = self.config.blank_id * torch.ones((batch_size, 1), dtype=torch.int32, device=encoder_out.device)
            labels[labels < 0] = self.config.blank_id
            
            decoder_out, h, c = self.model.head.decoder(torch.cat((plus_one_dim, labels), dim=1), hidden_states, hidden_c)

            joint = self.model.head.joint.joint(encoder_out, decoder_out)
            loss = torchaudio.functional.rnnt_loss(
                logits=joint,
                targets=labels,
                logit_lengths=encoded_lengths,
                target_lengths=target_lengths,
                blank=self.config.blank_id,
            )

        return Seq2SeqLMOutput(loss=loss, logits=encoder_out.transpose(1, 2))
    
    def _greedy_decode(self, x: Tensor, seqlen: Tensor) -> str:
        """
        Internal helper function for performing greedy decoding on a single sequence.
        """
        hyp: List[int] = []
        dec_state: Optional[Tensor] = None
        last_label: Optional[Tensor] = None
        for t in range(seqlen):
            f = x[t, :, :].unsqueeze(1)
            not_blank = True
            new_symbols = 0
            while not_blank and new_symbols < self.config.max_symbols:
                g, hidden = self.model.head.decoder.predict(last_label, dec_state)
                k = self.model.head.joint.joint(f, g)[0, 0, 0, :].argmax(0).item()
                if k == self.config.blank_id:
                    not_blank = False
                else:
                    hyp.append(k)
                    dec_state = hidden
                    last_label = torch.tensor([[hyp[-1]]]).to(x.device)
                    new_symbols += 1

        return torch.tensor(hyp, dtype=torch.int32)

    @torch.inference_mode()
    def generate(self, input_features: Tensor, input_lengths: Tensor, **kwargs) -> torch.Tensor:
        """
        Decode the output of an RNN-T model into a list of hypotheses.
        """
        encoder_out, encoded_lengths = self.model.encoder(input_features, input_lengths)
        encoder_out = encoder_out.transpose(1, 2)
        b = encoder_out.shape[0]
        preds = []
        for i in range(b):
            inseq = encoder_out[i, :, :].unsqueeze(1)
            preds.append(self._greedy_decode(inseq, encoded_lengths[i]))
        return pad_sequence(preds, batch_first=True, padding_value=self.config.blank_id)