File size: 1,561 Bytes
0b6d81f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: mit
language:
- ru
pipeline_tag: automatic-speech-recognition
library_name: transformers
tags:
- asr
- gigaam
- stt
- audio
- speech
- rnnt
- transducer
---
# GigaAM-v2-CTC 🤗 Hugging Face transformers
* original git https://github.com/salute-developers/GigaAM
Russian ASR model GigaAM-v2-RNNT.
## Model info
This is an original GigaAM-v2-RNNT with `transformers` library interface.
File [`gigaam_transformers.py`](https://huggingface.co/waveletdeboshir/gigaam-rnnt/blob/main/gigaam_transformers.py) contains model, feature extractor and tokenizer classes with usual transformers methods. Model can be initialized with transformers auto classes (see an example below).
## Installation
my lib versions:
* `torch` 2.5.1
* `torchaudio` 2.5.1
* `transformers` 4.49.0
## Usage
Usage is same as other `transformers` ASR models.
```python
from transformers import AutoModel, AutoProcessor
import torch
import torchaudio
# load audio
wav, sr = torchaudio.load("audio.wav")
# resample if necessary
wav = torchaudio.functional.resample(wav, sr, 16000)
# load model and processor
processor = AutoProcessor.from_pretrained("waveletdeboshir/gigaam-rnnt", trust_remote_code=True)
model = AutoModel.from_pretrained("waveletdeboshir/gigaam-rnnt", trust_remote_code=True)
model.eval()
input_features = processor(wav[0], sampling_rate=16000, return_tensors="pt")
# greedy prediction
with torch.no_grad():
pred_ids = model.generate(**input_features)
# decode token ids to text
transcription = processor.batch_decode(pred_ids)[0]
```
## Fine-tune |