Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,64 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- ru
|
5 |
+
pipeline_tag: automatic-speech-recognition
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- asr
|
9 |
+
- gigaam
|
10 |
+
- stt
|
11 |
+
- audio
|
12 |
+
- speech
|
13 |
+
- rnnt
|
14 |
+
- transducer
|
15 |
+
---
|
16 |
+
|
17 |
+
# GigaAM-v2-CTC 🤗 Hugging Face transformers
|
18 |
+
|
19 |
+
* original git https://github.com/salute-developers/GigaAM
|
20 |
+
|
21 |
+
Russian ASR model GigaAM-v2-RNNT.
|
22 |
+
|
23 |
+
## Model info
|
24 |
+
This is an original GigaAM-v2-RNNT with `transformers` library interface.
|
25 |
+
|
26 |
+
File [`gigaam_transformers.py`](https://huggingface.co/waveletdeboshir/gigaam-rnnt/blob/main/gigaam_transformers.py) contains model, feature extractor and tokenizer classes with usual transformers methods. Model can be initialized with transformers auto classes (see an example below).
|
27 |
+
|
28 |
+
## Installation
|
29 |
+
|
30 |
+
my lib versions:
|
31 |
+
* `torch` 2.5.1
|
32 |
+
* `torchaudio` 2.5.1
|
33 |
+
* `transformers` 4.49.0
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
Usage is same as other `transformers` ASR models.
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoModel, AutoProcessor
|
40 |
+
import torch
|
41 |
+
import torchaudio
|
42 |
+
|
43 |
+
# load audio
|
44 |
+
wav, sr = torchaudio.load("audio.wav")
|
45 |
+
# resample if necessary
|
46 |
+
wav = torchaudio.functional.resample(wav, sr, 16000)
|
47 |
+
|
48 |
+
# load model and processor
|
49 |
+
processor = AutoProcessor.from_pretrained("waveletdeboshir/gigaam-rnnt", trust_remote_code=True)
|
50 |
+
model = AutoModel.from_pretrained("waveletdeboshir/gigaam-rnnt", trust_remote_code=True)
|
51 |
+
model.eval()
|
52 |
+
|
53 |
+
input_features = processor(wav[0], sampling_rate=16000, return_tensors="pt")
|
54 |
+
|
55 |
+
# greedy prediction
|
56 |
+
with torch.no_grad():
|
57 |
+
pred_ids = model.generate(**input_features)
|
58 |
+
|
59 |
+
# decode token ids to text
|
60 |
+
transcription = processor.batch_decode(pred_ids)[0]
|
61 |
+
|
62 |
+
```
|
63 |
+
|
64 |
+
## Fine-tune
|