openai/whisper-medium

This model is a fine-tuned version of openai/whisper-medium on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3029
  • Wer: 9.0355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0392 3.03 1000 0.2023 10.1807
0.0036 7.01 2000 0.2478 9.4409
0.0013 10.04 3000 0.2791 9.1014
0.0002 14.01 4000 0.2970 9.0625
0.0002 17.04 5000 0.3029 9.0355

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
5,387
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train vumichien/whisper-medium-jp

Spaces using vumichien/whisper-medium-jp 17

Evaluation results