topic_classifier
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2182
- Accuracy: 0.8869
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7818 | 1.0 | 1859 | 0.6291 | 0.8493 |
0.5836 | 2.0 | 3718 | 0.5473 | 0.8644 |
0.4596 | 3.0 | 5577 | 0.5054 | 0.8795 |
0.3349 | 4.0 | 7436 | 0.5441 | 0.8721 |
0.2628 | 5.0 | 9295 | 0.5577 | 0.8783 |
0.2211 | 6.0 | 11154 | 0.5833 | 0.8810 |
0.1565 | 7.0 | 13013 | 0.6394 | 0.8761 |
0.1123 | 8.0 | 14872 | 0.6576 | 0.8847 |
0.0968 | 9.0 | 16731 | 0.7625 | 0.8798 |
0.0715 | 10.0 | 18590 | 0.8095 | 0.8835 |
0.0534 | 11.0 | 20449 | 0.9209 | 0.8807 |
0.0396 | 12.0 | 22308 | 0.9243 | 0.8823 |
0.0372 | 13.0 | 24167 | 0.9515 | 0.8835 |
0.0281 | 14.0 | 26026 | 1.0376 | 0.8798 |
0.0254 | 15.0 | 27885 | 1.0709 | 0.8854 |
0.0222 | 16.0 | 29744 | 1.0803 | 0.8881 |
0.0224 | 17.0 | 31603 | 1.1030 | 0.8820 |
0.0218 | 18.0 | 33462 | 1.1514 | 0.8795 |
0.0151 | 19.0 | 35321 | 1.1943 | 0.8807 |
0.0154 | 20.0 | 37180 | 1.2014 | 0.8826 |
0.012 | 21.0 | 39039 | 1.2208 | 0.8820 |
0.009 | 22.0 | 40898 | 1.2181 | 0.8804 |
0.0087 | 23.0 | 42757 | 1.1848 | 0.8838 |
0.0128 | 24.0 | 44616 | 1.1899 | 0.8829 |
0.0108 | 25.0 | 46475 | 1.2150 | 0.8860 |
0.009 | 26.0 | 48334 | 1.2330 | 0.8857 |
0.0118 | 27.0 | 50193 | 1.2174 | 0.8891 |
0.0104 | 28.0 | 52052 | 1.1944 | 0.8881 |
0.0049 | 29.0 | 53911 | 1.2085 | 0.8847 |
0.0063 | 30.0 | 55770 | 1.2342 | 0.8894 |
0.0075 | 31.0 | 57629 | 1.2276 | 0.8884 |
0.0035 | 32.0 | 59488 | 1.2319 | 0.8875 |
0.006 | 33.0 | 61347 | 1.2193 | 0.8860 |
0.0048 | 34.0 | 63206 | 1.2208 | 0.8863 |
0.0067 | 35.0 | 65065 | 1.2108 | 0.8857 |
0.0024 | 36.0 | 66924 | 1.2278 | 0.8884 |
0.003 | 37.0 | 68783 | 1.2291 | 0.8878 |
0.0024 | 38.0 | 70642 | 1.2284 | 0.8891 |
0.0033 | 39.0 | 72501 | 1.2153 | 0.8878 |
0.0046 | 40.0 | 74360 | 1.2182 | 0.8869 |
Framework versions
- Transformers 4.53.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support