Edit model card

dpr-ctx_encoder-bert-base-multilingual

Description

Multilingual DPR Model base on bert-base-multilingual-cased. DPR model DPR repo

Data

  1. NQ
  2. Trivia
  3. SQuAD
  4. DRCD*
  5. MLQA*

question pairs for train: 644,217
question pairs for dev: 73,710

*DRCD and MLQA are converted using script from haystack squad_to_dpr.py

Training Script

I use the script from haystack

Usage

from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('voidful/dpr-question_encoder-bert-base-multilingual')
model = DPRQuestionEncoder.from_pretrained('voidful/dpr-question_encoder-bert-base-multilingual')
input_ids = tokenizer("Hello, is my dog cute ?", return_tensors='pt')["input_ids"]
embeddings = model(input_ids).pooler_output

Follow the tutorial from haystack: Better Retrievers via "Dense Passage Retrieval"

from haystack.retriever.dense import DensePassageRetriever
retriever = DensePassageRetriever(document_store=document_store,
                                  query_embedding_model="voidful/dpr-question_encoder-bert-base-multilingual",
                                  passage_embedding_model="voidful/dpr-ctx_encoder-bert-base-multilingual",
                                  max_seq_len_query=64,
                                  max_seq_len_passage=256,
                                  batch_size=16,
                                  use_gpu=True,
                                  embed_title=True,
                                  use_fast_tokenizers=True)
Downloads last month
5
Safetensors
Model size
178M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using voidful/dpr-question_encoder-bert-base-multilingual 1