|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- en |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- librispeech_asr |
|
- robust-speech-event |
|
datasets: |
|
- librispeech_asr |
|
model-index: |
|
- name: XLS-R-300M - English |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: LibriSpeech (clean) |
|
type: librispeech_asr |
|
config: clean |
|
split: test |
|
args: |
|
language: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 12.29 |
|
- name: Test CER |
|
type: cer |
|
value: 3.34 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: en |
|
metrics: |
|
- name: Validation WER |
|
type: wer |
|
value: 36.75 |
|
- name: Validation CER |
|
type: cer |
|
value: 14.83 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 8.0 |
|
type: mozilla-foundation/common_voice_8_0 |
|
config: en |
|
split: test |
|
args: |
|
language: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 37.81 |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Test Data |
|
type: speech-recognition-community-v2/eval_data |
|
args: en |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 38.8 |
|
--- |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the librispeech_asr dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1444 |
|
- Wer: 0.1167 |
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 2.9365 | 4.17 | 500 | 2.9398 | 0.9999 | |
|
| 1.5444 | 8.33 | 1000 | 0.5947 | 0.4289 | |
|
| 1.1367 | 12.5 | 1500 | 0.2751 | 0.2366 | |
|
| 0.9972 | 16.66 | 2000 | 0.2032 | 0.1797 | |
|
| 0.9118 | 20.83 | 2500 | 0.1786 | 0.1479 | |
|
| 0.8664 | 24.99 | 3000 | 0.1641 | 0.1408 | |
|
| 0.8251 | 29.17 | 3500 | 0.1537 | 0.1267 | |
|
| 0.793 | 33.33 | 4000 | 0.1525 | 0.1244 | |
|
| 0.785 | 37.5 | 4500 | 0.1470 | 0.1184 | |
|
| 0.7612 | 41.66 | 5000 | 0.1446 | 0.1177 | |
|
| 0.7478 | 45.83 | 5500 | 0.1449 | 0.1176 | |
|
| 0.7443 | 49.99 | 6000 | 0.1444 | 0.1167 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.2.dev0 |
|
- Tokenizers 0.11.0 |
|
|