metadata
language: vi
tags:
- spam-detection
- vietnamese
- phobert
license: apache-2.0
datasets:
- visolex/ViSpamReviews
metrics:
- accuracy
- f1
model-index:
- name: phobert-spam-binary
results:
- task:
type: text-classification
name: Spam Detection (Binary)
dataset:
name: ViSpamReviews
type: custom
metrics:
- name: Accuracy
type: accuracy
value: <INSERT_ACCURACY>
- name: F1 Score
type: f1
value: <INSERT_F1_SCORE>
base_model:
- vinai/phobert-base
pipeline_tag: text-classification
PhoBERT-Spam-Binary
Fine-tuned from vinai/phobert-base
on ViSpamReviews (binary).
Task: Binary classification (0 = non-spam, 1 = spam)
Dataset: ViSpamReviews
Hyperparameters
- Batch size: 32
- LR: 3e-5
- Epochs: 100
- Max seq len: 256
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("visolex/phobert-spam-binary")
model = AutoModelForSequenceClassification.from_pretrained("visolex/phobert-spam-binary")
text = "Đánh giá ảo hoàn toàn!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
pred = model(**inputs).logits.argmax(dim=-1).item()
print("Spam" if pred==1 else "Non-spam")