PhoBERT‑HSD: Hate Speech Detection for Vietnamese Text

Fine‑tuned from vinai/phobert-base on the VN‑HSD dataset.

Model Details

  • Base Model: vinai/phobert-base
  • Dataset: VN‑HSD (ViSoLex‑HSD unified hate speech corpus)
  • Fine‑tuning: HuggingFace Transformers

Hyperparameters

  • Batch size: 32
  • Learning rate: 5e-5
  • Epochs: 100
  • Max sequence length: 256

Results

  • Accuracy: <INSERT_ACCURACY>
  • F1 Score: <INSERT_F1_SCORE>

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("visolex/phobert-hsd")
model = AutoModelForSequenceClassification.from_pretrained("visolex/phobert-hsd")

text = "Đừng nói những lời thô tục như vậy!"
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256)
pred = model(**inputs).logits.argmax(dim=-1).item()
print(f"Label: {['CLEAN','OFFENSIVE','HATE'][pred]}")
Downloads last month
27
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for visolex/phobert-hsd

Base model

vinai/phobert-base
Finetuned
(111)
this model

Collection including visolex/phobert-hsd

Evaluation results