YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

πŸ—‘οΈ Garbage Classification Model β€” CS549

A Convolutional Neural Network trained to classify garbage images into 7 categories:

  • Cardboard
  • Glass
  • Metal
  • Paper
  • Plastic
  • Trash
  • Biodegradable

πŸ” Use Case

Helps automate waste sorting for better recycling. Great for demos, PoC apps, or smart bin integration.

🧠 Model Overview

  • Architecture: CNN (Conv2D, MaxPooling, Dense)
  • Input: 224x224 RGB
  • Output: 7-class probability vector
  • Accuracy: ~92% (validation)
  • Explainability: Supports Grad-CAM

πŸ“¦ How to Use

from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np

model = load_model("GarbageMLModel_CS549.h5")

img = Image.open("example.jpg").resize((224, 224)) img_array = np.expand_dims(np.array(img) / 255.0, axis=0)

pred = model.predict(img_array) classes = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash', 'biodegradable'] print("Prediction:", classes[np.argmax(pred)])

πŸ“ Files

  • GarbageMLModel_CS549.h5 – Trained model
  • label_map.json – Label mapping

πŸ‘€ Author

Vincent Huynh
πŸ“§ [email protected]
πŸ”— LinkedIn | πŸ”— GitHub

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support