YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
ποΈ Garbage Classification Model β CS549
A Convolutional Neural Network trained to classify garbage images into 7 categories:
- Cardboard
- Glass
- Metal
- Paper
- Plastic
- Trash
- Biodegradable
π Use Case
Helps automate waste sorting for better recycling. Great for demos, PoC apps, or smart bin integration.
π§ Model Overview
- Architecture: CNN (Conv2D, MaxPooling, Dense)
- Input: 224x224 RGB
- Output: 7-class probability vector
- Accuracy: ~92% (validation)
- Explainability: Supports Grad-CAM
π¦ How to Use
from tensorflow.keras.models import load_model from PIL import Image import numpy as np
model = load_model("GarbageMLModel_CS549.h5")
img = Image.open("example.jpg").resize((224, 224)) img_array = np.expand_dims(np.array(img) / 255.0, axis=0)
pred = model.predict(img_array) classes = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash', 'biodegradable'] print("Prediction:", classes[np.argmax(pred)])
π Files
GarbageMLModel_CS549.h5
β Trained modellabel_map.json
β Label mapping
π€ Author
Vincent Huynh
π§ [email protected]
π LinkedIn | π GitHub
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support