Phi-2-psy
Phi-2-psy is a merge of the following models:
π Evaluation
The evaluation was performed using LLM AutoEval on Nous suite.
Model | AGIEval | GPT4All | TruthfulQA | Bigbench | Average |
---|---|---|---|---|---|
phi-2-psy | 34.4 | 71.4 | 48.2 | 38.1 | 48.02 |
phixtral-2x2_8 | 34.1 | 70.4 | 48.8 | 37.8 | 47.78 |
dolphin-2_6-phi-2 | 33.1 | 69.9 | 47.4 | 37.2 | 46.89 |
phi-2-orange | 33.4 | 71.3 | 49.9 | 37.3 | 47.97 |
phi-2 | 28.0 | 70.8 | 44.4 | 35.2 | 44.61 |
𧩠Configuration
slices:
- sources:
- model: rhysjones/phi-2-orange
layer_range: [0, 32]
- model: cognitivecomputations/dolphin-2_6-phi-2
layer_range: [0, 32]
merge_method: slerp
base_model: rhysjones/phi-2-orange
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π» Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("vince62s/phi-2-psy", torch_dtype="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("vince62s/phi-2-psy", trust_remote_code=True)
inputs = tokenizer('''def print_prime(n):
"""
Print all primes between 1 and n
"""''', return_tensors="pt", return_attention_mask=False)
outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 62.80 |
AI2 Reasoning Challenge (25-Shot) | 60.84 |
HellaSwag (10-Shot) | 75.52 |
MMLU (5-Shot) | 57.57 |
TruthfulQA (0-shot) | 48.22 |
Winogrande (5-shot) | 75.45 |
GSM8k (5-shot) | 59.21 |
- Downloads last month
- 49
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for vince62s/phi-2-psy
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard60.840
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard75.520
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard57.570
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard48.220
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard75.450
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard59.210