viet19197 commited on
Commit
85bcbe4
·
1 Parent(s): 790fff0

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  library_name: stable-baselines3
3
  tags:
4
- - LunarLander-v2
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
@@ -12,17 +12,17 @@ model-index:
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
- name: LunarLander-v2
16
- type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 261.86 +/- 23.58
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
- # **PPO** Agent playing **LunarLander-v2**
25
- This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
 
1
  ---
2
  library_name: stable-baselines3
3
  tags:
4
+ - CartPole-v1
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
  metrics:
18
  - type: mean_reward
19
+ value: 500.00 +/- 0.00
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **CartPole-v1**
25
+ This is a trained model of a **PPO** agent playing **CartPole-v1**
26
  using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
 
28
  ## Usage (with Stable-baselines3)
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f299896fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f299896fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f299896fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f299896fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f299896fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f299896ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2998973040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f29989730d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2998973160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f29989731f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2998973280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2998967f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672147959247711049, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJry/Tx7YNm6bC+fvICBnDwXzsK7J4OFPQAAgD8AAIA/ZghnvAqwP7vCpI87cc5KPIbpoLxG7zE9AACAPwAAgD+A+Bu916NfuV+OnLf3kBuzsMWoO1BZuzYAAIA/AACAP3OQ1r173IS6XS0auuaZSDUzGP06ToEvOQAAgD8AAAAAM9kEvMOJG7ozXVy5JpGps7U9YLsGJH44AACAPwAAgD8zB9G94QSDuhyRDTsCwOA3YpmuOlBg0bYAAIA/AAAAAHPpsz3hNJi6mtHjtyt6vrL16VG6r9MDNwAAgD8AAIA/M9SCvShAwz5ca7s9gEJ4vgEKMjuVxSa9AAAAAAAAAAAaNSg90iaPP2jf1z27Qby+DKyMPBSOyb0AAAAAAAAAADMd57xcZyC6vjXCuvHyobU3VRu7+3rnOQAAgD8AAIA/5pYdveHAirpab3I7aMWGOHEYkbqnXBK6AACAPwAAgD+aqNm89lRvupDvZjg3HGu1XrNQu9uUhrcAAIA/AACAPzPbobyuraW6TiPPOoZoxDW5cpw5Fn7uuQAAgD8AAIA/phLhPT8fBT8NYCa+R7OZvlwaE72K3fE8AAAAAAAAAADNXYi9w/EruiMZlLlpHZK2row6O+AirTgAAIA/AACAPwDBh7yPJkG6A3z2Otq1p7Xthka7VtgRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQE6YMBopYUCUhpRSlIwBbJRN6AOMAXSUR0CPOZd0q6OHdX2UKGgGaAloD0MIgA2IENeBYUCUhpRSlGgVTegDaBZHQI9J2JtSAH51fZQoaAZoCWgPQwgQsiyY+A5kQJSGlFKUaBVN6ANoFkdAj02YoiLVF3V9lChoBmgJaA9DCE93nnjO8WJAlIaUUpRoFU3oA2gWR0CPUZ1SOzY3dX2UKGgGaAloD0MIWipvRzg/YkCUhpRSlGgVTegDaBZHQI9SIM2FWXF1fZQoaAZoCWgPQwgDz72HyzFpQJSGlFKUaBVN6ANoFkdAj1ideQdS23V9lChoBmgJaA9DCNdrelDQXGVAlIaUUpRoFU3oA2gWR0CPXDsolUqAdX2UKGgGaAloD0MIu5f75KiZY0CUhpRSlGgVTegDaBZHQI9fbINmUW51fZQoaAZoCWgPQwgRixh2mFhhQJSGlFKUaBVN6ANoFkdAj2alByCFsnV9lChoBmgJaA9DCA2Jeyx9+15AlIaUUpRoFU3oA2gWR0CPblCVKPGRdX2UKGgGaAloD0MI7mDEPoFAZkCUhpRSlGgVTegDaBZHQI90HXTVlPJ1fZQoaAZoCWgPQwhe9YB5SBdgQJSGlFKUaBVN6ANoFkdAj3cOM2m52HV9lChoBmgJaA9DCI/DYP4KLV9AlIaUUpRoFU3oA2gWR0CPeZ1yNn5BdX2UKGgGaAloD0MIQUerWtIFY0CUhpRSlGgVTegDaBZHQI+EaSRr8BN1fZQoaAZoCWgPQwi3C811GqtlQJSGlFKUaBVN6ANoFkdAj5CRVAAyVXV9lChoBmgJaA9DCDxKJTyhs0hAlIaUUpRoFUveaBZHQI+RYeeWfK91fZQoaAZoCWgPQwhJu9HHfI1nQJSGlFKUaBVN6ANoFkdAj8GZM+NcW3V9lChoBmgJaA9DCO3Vx0PfIGRAlIaUUpRoFU3oA2gWR0CPyTYjjaPCdX2UKGgGaAloD0MIuFz92CTQZkCUhpRSlGgVTegDaBZHQI/Z4xcmjTN1fZQoaAZoCWgPQwivIqMDkvBjQJSGlFKUaBVN6ANoFkdAj92AlOXVsnV9lChoBmgJaA9DCLZHb7iP0mVAlIaUUpRoFU3oA2gWR0CP4XEsrd30dX2UKGgGaAloD0MIDvYmhuRMYkCUhpRSlGgVTegDaBZHQI/h6/TLGJh1fZQoaAZoCWgPQwibqntkc8BeQJSGlFKUaBVN6ANoFkdAj+e+XZ5AyHV9lChoBmgJaA9DCB1WuOUjiGNAlIaUUpRoFU3oA2gWR0CP6vlnyup0dX2UKGgGaAloD0MIA+yjU1eaXkCUhpRSlGgVTegDaBZHQI/uH7pFCsx1fZQoaAZoCWgPQwjb3m5JjjdmQJSGlFKUaBVN6ANoFkdAj/VEN4JNTXV9lChoBmgJaA9DCKN5AIv8KWNAlIaUUpRoFU3oA2gWR0CP/HV4HHFQdX2UKGgGaAloD0MIF4GxvgFtYkCUhpRSlGgVTegDaBZHQJABCSSvC/J1fZQoaAZoCWgPQwiatKm6xxhmQJSGlFKUaBVN6ANoFkdAkAKAUQCjlHV9lChoBmgJaA9DCBo1XyUfvWNAlIaUUpRoFU3oA2gWR0CQCWCzkZJkdX2UKGgGaAloD0MIMlab/1fwZkCUhpRSlGgVTegDaBZHQJAQWF23azx1fZQoaAZoCWgPQwhUxOkk2/1jQJSGlFKUaBVN6ANoFkdAkBDEFSsKcHV9lChoBmgJaA9DCPUwtDq5HWVAlIaUUpRoFU3oA2gWR0CQKWVz6rNodX2UKGgGaAloD0MIOX6oNGIkY0CUhpRSlGgVTegDaBZHQJAtiz2OAAh1fZQoaAZoCWgPQwgKKxVU1LFkQJSGlFKUaBVN6ANoFkdAkDZTWsijcnV9lChoBmgJaA9DCNDtJY3Rpl1AlIaUUpRoFU3oA2gWR0CQOEER8MNMdX2UKGgGaAloD0MIswjFVlD6YUCUhpRSlGgVTegDaBZHQJA6QVi4J/p1fZQoaAZoCWgPQwjikXh5um9lQJSGlFKUaBVN6ANoFkdAkDqBWLgn+nV9lChoBmgJaA9DCD9Tr1sEL2RAlIaUUpRoFU3oA2gWR0CQPYSJj2BbdX2UKGgGaAloD0MIQbtDigE6ZECUhpRSlGgVTegDaBZHQJA/Naq0dBB1fZQoaAZoCWgPQwjek4eFWs1eQJSGlFKUaBVN6ANoFkdAkEC7OJLuhXV9lChoBmgJaA9DCDsah/rdtGNAlIaUUpRoFU3oA2gWR0CQRBL127nQdX2UKGgGaAloD0MISWjLuRRQXkCUhpRSlGgVTegDaBZHQJBHrSKFZgZ1fZQoaAZoCWgPQwjYZmMl5q5kQJSGlFKUaBVN6ANoFkdAkEqB5C4SYnV9lChoBmgJaA9DCIS53cv9QmRAlIaUUpRoFU3oA2gWR0CQTBaqjrRjdX2UKGgGaAloD0MI4C77dSfBY0CUhpRSlGgVTegDaBZHQJBStrTH80l1fZQoaAZoCWgPQwhqoWRyamJjQJSGlFKUaBVN6ANoFkdAkFlsTJyQxXV9lChoBmgJaA9DCNODglI08GhAlIaUUpRoFU3oA2gWR0CQWc8MNMGpdX2UKGgGaAloD0MIhzJUxdSiYECUhpRSlGgVTegDaBZHQJByYVdonKJ1fZQoaAZoCWgPQwgaprbUwRFjQJSGlFKUaBVN6ANoFkdAkHZpKnNxEXV9lChoBmgJaA9DCBfX+Ez2KWRAlIaUUpRoFU3oA2gWR0CQf3w71ZkkdX2UKGgGaAloD0MItJCA0WVKYECUhpRSlGgVTegDaBZHQJCBqU6gdwN1fZQoaAZoCWgPQwhgIt46fwdmQJSGlFKUaBVN6ANoFkdAkIP2ZAprlHV9lChoBmgJaA9DCCYeUDblFmhAlIaUUpRoFU3oA2gWR0CQhD89wFTvdX2UKGgGaAloD0MIEDtT6LwXX0CUhpRSlGgVTegDaBZHQJCHzf51vEV1fZQoaAZoCWgPQwiiQ+BIIM5lQJSGlFKUaBVN6ANoFkdAkImqlHjIaXV9lChoBmgJaA9DCKLPRxnxfWFAlIaUUpRoFU3oA2gWR0CQi17ihnJ1dX2UKGgGaAloD0MISKeufJbxYUCUhpRSlGgVTegDaBZHQJCO9yXD3uh1fZQoaAZoCWgPQwhRFr6+1mtlQJSGlFKUaBVN6ANoFkdAkJK/2wmmcnV9lChoBmgJaA9DCEKUL2ghGlJAlIaUUpRoFUvgaBZHQJCTdymygPF1fZQoaAZoCWgPQwjEQUKUr75jQJSGlFKUaBVN6ANoFkdAkJXJiAlOXXV9lChoBmgJaA9DCNczhGOWN2dAlIaUUpRoFU3oA2gWR0CQl1URnOB2dX2UKGgGaAloD0MIOj/FcSAlcUCUhpRSlGgVTYACaBZHQJCaCk56t1Z1fZQoaAZoCWgPQwjXFwltOR8pwJSGlFKUaBVLvGgWR0CQnNIhhYvGdX2UKGgGaAloD0MImUhpNo9AYkCUhpRSlGgVTegDaBZHQJCdu6Ymb9Z1fZQoaAZoCWgPQwgJGF3eHAZkQJSGlFKUaBVN6ANoFkdAkKPlp48lonV9lChoBmgJaA9DCHUEcLP48WBAlIaUUpRoFU3oA2gWR0CQpEfQa72+dX2UKGgGaAloD0MIKxa/Kaz1Y0CUhpRSlGgVTegDaBZHQJCpbIlt0mt1fZQoaAZoCWgPQwhVvfxOEzRhQJSGlFKUaBVN6ANoFkdAkMpiOWBz3nV9lChoBmgJaA9DCCr/Wl65Q2VAlIaUUpRoFU3oA2gWR0CQzHJJGvwFdX2UKGgGaAloD0MISN3OvnKpYkCUhpRSlGgVTegDaBZHQJDOuY4Qz1t1fZQoaAZoCWgPQwhiEcMOY3hjQJSGlFKUaBVN6ANoFkdAkM79vS+g13V9lChoBmgJaA9DCPWgoBSt8l9AlIaUUpRoFU3oA2gWR0CQ09NmDlHSdX2UKGgGaAloD0MIOxxdpTvpYUCUhpRSlGgVTegDaBZHQJDVdtuUD+11fZQoaAZoCWgPQwhIMUCiCbluQJSGlFKUaBVNKwNoFkdAkNc76pHZsnV9lChoBmgJaA9DCHv5nSazfGZAlIaUUpRoFU3oA2gWR0CQ2NQRPGhmdX2UKGgGaAloD0MIl6yKcJNcY0CUhpRSlGgVTegDaBZHQJDcxiPQv6F1fZQoaAZoCWgPQwguOllqvVdlQJSGlFKUaBVN6ANoFkdAkN7ElZ5iVnV9lChoBmgJaA9DCPW7sDXbGGVAlIaUUpRoFU3oA2gWR0CQ4qId2gWadX2UKGgGaAloD0MIOrAcIQP4XkCUhpRSlGgVTegDaBZHQJDlcdHUc4p1fZQoaAZoCWgPQwiHTs+7sSpkQJSGlFKUaBVN6ANoFkdAkOZWPgeijHV9lChoBmgJaA9DCCno9pJG0mJAlIaUUpRoFU3oA2gWR0CQ7COKfnOjdX2UKGgGaAloD0MIqvOo+L/AXkCUhpRSlGgVTegDaBZHQJDsfXDm8ul1fZQoaAZoCWgPQwgudZDXA5BjQJSGlFKUaBVN6ANoFkdAkPD+H8CPqHV9lChoBmgJaA9DCHl0IyyqXmBAlIaUUpRoFU3oA2gWR0CREAB3A2ycdX2UKGgGaAloD0MIahZod0jIZkCUhpRSlGgVTegDaBZHQJERxQYUFjd1fZQoaAZoCWgPQwhRS3MrhIZgQJSGlFKUaBVN6ANoFkdAkROH7YTTOXV9lChoBmgJaA9DCKT+eoWFpmNAlIaUUpRoFU3oA2gWR0CRE7+R5kbxdX2UKGgGaAloD0MIhSNIpVhOYUCUhpRSlGgVTegDaBZHQJEX1um78Nx1fZQoaAZoCWgPQwhw0clSa5ZmQJSGlFKUaBVN6ANoFkdAkRkwezUqhHV9lChoBmgJaA9DCKwBSkMNtmVAlIaUUpRoFU3oA2gWR0CRGqzYEnstdX2UKGgGaAloD0MIIGEYsORmYkCUhpRSlGgVTegDaBZHQJEb8jOcDr91fZQoaAZoCWgPQwinsijsInpkQJSGlFKUaBVN6ANoFkdAkR84q9XcQHV9lChoBmgJaA9DCK+w4H7ADmZAlIaUUpRoFU3oA2gWR0CRIPPUKArhdX2UKGgGaAloD0MIB5j5Dv56YkCUhpRSlGgVTegDaBZHQJEkWjfvWpZ1fZQoaAZoCWgPQwjiytk7IwFjQJSGlFKUaBVN6ANoFkdAkSbDQ7cO9XV9lChoBmgJaA9DCAKdSZsqP2RAlIaUUpRoFU3oA2gWR0CRJ4/J/5LzdX2UKGgGaAloD0MInfF9cakTX0CUhpRSlGgVTegDaBZHQJEsxjWkJrt1fZQoaAZoCWgPQwhPyTmxB/piQJSGlFKUaBVN6ANoFkdAkS0X6l+Ey3V9lChoBmgJaA9DCBVWKqgo4mVAlIaUUpRoFU3oA2gWR0CRMXaWX1J2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f299896fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f299896fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f299896fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f299896fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f299896fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f299896ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2998973040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f29989730d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2998973160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f29989731f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2998973280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2998967f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672149384562435261, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAG98WL1TmYI8+w5pPMk6or3T0yS8CF23PKKk8rx+nJQ+zU+yPeDS0zvctCm9eBU6veSkhz7MKqs+HEEhvSW+ub440qS9iHo1vkQkCT0gZmC+pNYFvtoqDr61i3w9NCNXvQy8Ij0LZju+h4AZvb17HT7xfO++3iInvW/M2D0+Jp+9q6dqvnl1gD59MoQ8dnDOvhAm6r1lLkM+RvrFPbf0Qb64tBY9/V40vjijtrwRkn4+TPqMPSVzebt7Doo7BDXqPa1Bv7x70RG/EouivKK9Iz84a1e9sgFoPrYUF71MypS+E6voPIHjKL5RVra80mGJPixujz4Zgxi96wyjvecmnD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAd9WbgjyFwnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfWEVnEl3R1fZQoaAZHQH9AAAAAAABoB030AWgIR0B31j7VJ+UhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9ZdrftQbnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfW+fAbhm51fZQoaAZHQH9AAAAAAABoB030AWgIR0B32Aakyk9EdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9mY2Kl54XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfa4TPBzmx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B32y0eEIw/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9zOzposZ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfc3VXmvGJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B33PE5yU9qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd90raufVZ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfdZCv5gw51fZQoaAZHQH9AAAAAAABoB030AWgIR0B33ZF/hESedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9+vYvnKXHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfftxEORT11fZQoaAZHQH9AAAAAAABoB030AWgIR0B34CtbLU1AdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+BsMAmzB3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfgjAzpHI91fZQoaAZHQH9AAAAAAABoB030AWgIR0B34TuE25xzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+JhNM495nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfj8+qzZ6F1fZQoaAZHQH9AAAAAAABoB030AWgIR0B35TfLs8gZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+WJhvze43V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfnIClrM1V1fZQoaAZHQH9AAAAAAABoB030AWgIR0B35y6mO2iMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+dBCD28I3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfneNHYpUh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B357Aeq7yydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+fbbUPQOXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfp+dPLxI91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4N54gRsdldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeDgPykKu0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg4PIS13MZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4OFsrNGExdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeDkA+IMz/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg6ClnAZbZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4O4kona37dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeDzHZsbednV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg9ESuhbnp1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4PqKgqVhTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeD6w2ETQFHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg+wp4KQaJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4PvkBCD28dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeD8x8UmD2HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg/XN5dGAl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4QYQCjk+5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEGPomoitHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhCB1X/5tZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4QjSqlxffdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEJTSb6P83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhC7we/5+J1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4Q/YDklu4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEV+HJtBOnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhGvczqKP51fZQoaAZHQH9AAAAAAABoB030AWgIR0B4RxV6u4gBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEieLNwBHXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhIrI5o4+91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4SL6SDAaedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEj0ygwoLHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhJLDuSfUZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4SVdC3PRidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEtyOaOPvXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhLeWv8qF11fZQoaAZHQH9AAAAAAABoB030AWgIR0B4mgOG0u14dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeJoxc3VConV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHiaUHMUypJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4mutMfzSUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeJv5vtMPBnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHidgZ88cMp1fZQoaAZHQHrAAAAAAABoB02sAWgIR0B4naUliSaFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeJ7DbJwKjXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHigqakRBeJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4oLgjyFwldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKDLh73PA3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHihEW69TP11fZQoaAZHQH9AAAAAAABoB030AWgIR0B4oUo3Jgb7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKF3hXKbKHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHijpH/cWTJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4o6vbGm1qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKQfapPykXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHikTOcDr7h1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4pGvwEyLydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKUI6bONYXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHimJE6T4cp1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4p7i4rjHXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKfcLSeAeHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHio/gNwzch1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4qt7kXDWLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKrtu1ndwnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHirAzYVZcN1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4q0sg+yJLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKuKuSwGGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHiruGfwqiJ1fZQoaAZHQHugAAAAAABoB026AWgIR0B4rXvphWo4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeK3bKifxt3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHit4e5nUUh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4rlRzijtYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeK6Awwj+rHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22eee1c84dfda0e93e000103aa09c253c70785714b5188b7cf8ea423d4b81775
3
+ size 137694
ppo-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-CartPole-v1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f299896fca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f299896fd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f299896fdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f299896fe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f299896fee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f299896ff70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2998973040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f29989730d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2998973160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f29989731f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2998973280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2998967f30>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 4
29
+ ],
30
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
31
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
32
+ "bounded_below": "[ True True True True]",
33
+ "bounded_above": "[ True True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 2,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672149384562435261,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAQAAAAAAAG98WL1TmYI8+w5pPMk6or3T0yS8CF23PKKk8rx+nJQ+zU+yPeDS0zvctCm9eBU6veSkhz7MKqs+HEEhvSW+ub440qS9iHo1vkQkCT0gZmC+pNYFvtoqDr61i3w9NCNXvQy8Ij0LZju+h4AZvb17HT7xfO++3iInvW/M2D0+Jp+9q6dqvnl1gD59MoQ8dnDOvhAm6r1lLkM+RvrFPbf0Qb64tBY9/V40vjijtrwRkn4+TPqMPSVzebt7Doo7BDXqPa1Bv7x70RG/EouivKK9Iz84a1e9sgFoPrYUF71MypS+E6voPIHjKL5RVra80mGJPixujz4Zgxi96wyjvecmnD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLBIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAd9WbgjyFwnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfWEVnEl3R1fZQoaAZHQH9AAAAAAABoB030AWgIR0B31j7VJ+UhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9ZdrftQbnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfW+fAbhm51fZQoaAZHQH9AAAAAAABoB030AWgIR0B32Aakyk9EdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9mY2Kl54XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfa4TPBzmx1fZQoaAZHQH9AAAAAAABoB030AWgIR0B32y0eEIw/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9zOzposZ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfc3VXmvGJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B33PE5yU9qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd90raufVZ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfdZCv5gw51fZQoaAZHQH9AAAAAAABoB030AWgIR0B33ZF/hESedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd9+vYvnKXHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfftxEORT11fZQoaAZHQH9AAAAAAABoB030AWgIR0B34CtbLU1AdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+BsMAmzB3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfgjAzpHI91fZQoaAZHQH9AAAAAAABoB030AWgIR0B34TuE25xzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+JhNM495nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfj8+qzZ6F1fZQoaAZHQH9AAAAAAABoB030AWgIR0B35TfLs8gZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+WJhvze43V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfnIClrM1V1fZQoaAZHQH9AAAAAAABoB030AWgIR0B35y6mO2iMdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+dBCD28I3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfneNHYpUh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B357Aeq7yydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAd+fbbUPQOXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHfp+dPLxI91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4N54gRsdldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeDgPykKu0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg4PIS13MZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4OFsrNGExdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeDkA+IMz/XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg6ClnAZbZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4O4kona37dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeDzHZsbednV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg9ESuhbnp1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4PqKgqVhTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeD6w2ETQFHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg+wp4KQaJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4PvkBCD28dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeD8x8UmD2HV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHg/XN5dGAl1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4QYQCjk+5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEGPomoitHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhCB1X/5tZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4QjSqlxffdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEJTSb6P83V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhC7we/5+J1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4Q/YDklu4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEV+HJtBOnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhGvczqKP51fZQoaAZHQH9AAAAAAABoB030AWgIR0B4RxV6u4gBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEieLNwBHXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhIrI5o4+91fZQoaAZHQH9AAAAAAABoB030AWgIR0B4SL6SDAaedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEj0ygwoLHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhJLDuSfUZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4SVdC3PRidX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeEtyOaOPvXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHhLeWv8qF11fZQoaAZHQH9AAAAAAABoB030AWgIR0B4mgOG0u14dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeJoxc3VConV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHiaUHMUypJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4mutMfzSUdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeJv5vtMPBnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHidgZ88cMp1fZQoaAZHQHrAAAAAAABoB02sAWgIR0B4naUliSaFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeJ7DbJwKjXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHigqakRBeJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4oLgjyFwldX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKDLh73PA3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHihEW69TP11fZQoaAZHQH9AAAAAAABoB030AWgIR0B4oUo3Jgb7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKF3hXKbKHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHijpH/cWTJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4o6vbGm1qdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKQfapPykXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHikTOcDr7h1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4pGvwEyLydX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKUI6bONYXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHimJE6T4cp1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4p7i4rjHXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKfcLSeAeHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHio/gNwzch1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4qt7kXDWLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKrtu1ndwnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHirAzYVZcN1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4q0sg+yJLdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeKuKuSwGGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHiruGfwqiJ1fZQoaAZHQHugAAAAAABoB026AWgIR0B4rXvphWo4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeK3bKifxt3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQHit4e5nUUh1fZQoaAZHQH9AAAAAAABoB030AWgIR0B4rlRzijtYdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAeK6Awwj+rHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c8d1537f254952644413487d2f518840d7e8a678eb5ae2ae04214c1bf897d59
3
+ size 82809
ppo-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8be9436dfd1fb9c1ea3da30a517448a071e03a7392dcd470f8e3a4ef1c1687fa
3
+ size 40641
ppo-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 261.85766475071, "std_reward": 23.584332684190986, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T13:52:52.930466"}
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T14:05:08.804729"}