viet19197 commited on
Commit
790fff0
·
1 Parent(s): e027441

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 216.72 +/- 23.73
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 261.86 +/- 23.58
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f299896fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f299896fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f299896fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f299896fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f299896fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f299896ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2998973040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f29989730d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2998973160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f29989731f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2998973280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2998967f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672144556733398893, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrDib3DsW66BmoHPIKBJraX1487KYMatQAAgD8AAIA/4MNmvhRi27phhxc6BEMgPTlJbjxlNd85AACAPwAAgD+YNty+i8hKPxqpTj3mZ6a+rMMhva573T0AAAAAAAAAANqXr70pWF66OkziOkTOAzaasmE5UqgAugAAgD8AAIA/Syeevky1kj90z4C+dfKFvne9XL5KbSS9AAAAAAAAAACzQrw9j+ZNutj8vTuWXhc2o/lHuxNuFDUAAIA/AACAP01VU732XHC6apJOurGxkLYOh4e6QhdvOQAAgD8AAIA/moWDvYTbPz65x609EvgXvhkp170iwI49AAAAAAAAAACa6Ua9CqcwuTJlFzwr+iU3T6abuZw2KzYAAIA/AACAP5MTUj7hIb8+ihETvpG8Ib7pFk870aGUuwAAAAAAAAAAzVGkvrHOGD92J4A+iY5DvukGAL3LAQg9AAAAAAAAAACaVUY84XKKuq0+cblvW6e0ZQoCO9IpiTgAAIA/AACAP5pEdL32+HO6VtCEOx5GjjXQ7Pw6t/eZugAAgD8AAIA/s8RKPRRshrpdqwi8U1cMN80Jn7pAs3m2AACAPwAAgD8gJgE+e5TfN2GSErtgiau3iFn2Oz0kLDoAAIA/AACAP6bPsL17VIW6gPnZOnX6oDbUkPw6sD/0uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIldi1vV0/YECUhpRSlIwBbJRN6AOMAXSUR0B5XRxYJVsDdX2UKGgGaAloD0MI78nDQq09VkCUhpRSlGgVTegDaBZHQHlrbNbC79R1fZQoaAZoCWgPQwjTiJl9HktIwJSGlFKUaBVNIwFoFkdAeW50elsP8XV9lChoBmgJaA9DCKg4Drxa8FFAlIaUUpRoFU3oA2gWR0B5cUOc2BJ7dX2UKGgGaAloD0MIycaDLXa/WECUhpRSlGgVTegDaBZHQHmRD7l7tzF1fZQoaAZoCWgPQwhUVP1K51dKQJSGlFKUaBVN6ANoFkdAeZgfZElVtHV9lChoBmgJaA9DCBwJNNjUwl9AlIaUUpRoFU3oA2gWR0B5mxf8dgfEdX2UKGgGaAloD0MIFoczvxoKZUCUhpRSlGgVTUEBaBZHQHmpRfrrxAl1fZQoaAZoCWgPQwiFzQAXZNZUQJSGlFKUaBVN6ANoFkdAef/ZFG5MDnV9lChoBmgJaA9DCGoUkszqBlRAlIaUUpRoFU3oA2gWR0B6COkqMFUydX2UKGgGaAloD0MIkMAffv43QcCUhpRSlGgVS91oFkdAehcbYsd1dXV9lChoBmgJaA9DCBedLLVe7GRAlIaUUpRoFU3oA2gWR0B6HQ3Ns3yadX2UKGgGaAloD0MI9inHZPHHYkCUhpRSlGgVTegDaBZHQHou92xIJ7d1fZQoaAZoCWgPQwhn74y2Kt9gQJSGlFKUaBVN6ANoFkdAekNOtnwocHV9lChoBmgJaA9DCNr/AGvV8ldAlIaUUpRoFU3oA2gWR0B6SEdbPhQ4dX2UKGgGaAloD0MIxNDq5IwgY0CUhpRSlGgVTegDaBZHQHpIy83++/R1fZQoaAZoCWgPQwjmJJS+EGJUQJSGlFKUaBVN6ANoFkdAeljpCa7Va3V9lChoBmgJaA9DCLkXmBWKg1ZAlIaUUpRoFU3oA2gWR0B6ba8+RoysdX2UKGgGaAloD0MI5x2n6EhWJsCUhpRSlGgVTRcBaBZHQHpyO8kD6nB1fZQoaAZoCWgPQwjj3vyGif4nwJSGlFKUaBVL/mgWR0B6hThXKbKBdX2UKGgGaAloD0MI8BMH0G/AYUCUhpRSlGgVTegDaBZHQHqmfNRm9QJ1fZQoaAZoCWgPQwiOk8K8x71XQJSGlFKUaBVN6ANoFkdAeqnI8yN4q3V9lChoBmgJaA9DCG6l12Zjo1VAlIaUUpRoFU3oA2gWR0B6rNoxpL26dX2UKGgGaAloD0MIWOatug6cX0CUhpRSlGgVTegDaBZHQHrPNO6/Zdx1fZQoaAZoCWgPQwgn2H+dm19aQJSGlFKUaBVN6ANoFkdAetekUKzAvnV9lChoBmgJaA9DCEfmkT8Y8EDAlIaUUpRoFUvGaBZHQHrek6xPfsN1fZQoaAZoCWgPQwjNctnonEc1wJSGlFKUaBVL9WgWR0B66AH4XXRPdX2UKGgGaAloD0MI3IDPDyPWYUCUhpRSlGgVTegDaBZHQHrtV8stkFx1fZQoaAZoCWgPQwg6dHrejZ9eQJSGlFKUaBVN6ANoFkdAe0WwGW2PUHV9lChoBmgJaA9DCGLZzCGpJmRAlIaUUpRoFU3oA2gWR0B7T4swtapxdX2UKGgGaAloD0MIUhA8vr0vNUCUhpRSlGgVS+NoFkdAe1V+SbH6uXV9lChoBmgJaA9DCAcoDTUK82BAlIaUUpRoFU3oA2gWR0B7Xikfs/pudX2UKGgGaAloD0MICqAYWTI+XkCUhpRSlGgVTegDaBZHQHtjddiUgSx1fZQoaAZoCWgPQwiRC87g7xf5P5SGlFKUaBVNKgFoFkdAe34gMc6vJXV9lChoBmgJaA9DCMN95NakTzBAlIaUUpRoFUvSaBZHQHt/7ns9jgB1fZQoaAZoCWgPQwiAnZs24zxfQJSGlFKUaBVN6ANoFkdAe4azLwF1S3V9lChoBmgJaA9DCGsPe6GAcFRAlIaUUpRoFU3oA2gWR0B7i7abnX/YdX2UKGgGaAloD0MITbwDPGlhNsCUhpRSlGgVTRMBaBZHQHuT6n3ta6l1fZQoaAZoCWgPQwj1uG+1TkhWQJSGlFKUaBVN6ANoFkdAe5t25xzaK3V9lChoBmgJaA9DCNaMDHIXYV5AlIaUUpRoFU3oA2gWR0B7rfR2KVIJdX2UKGgGaAloD0MI73TnieckYkCUhpRSlGgVTegDaBZHQHuxyh8IAwR1fZQoaAZoCWgPQwjh0cYRazthQJSGlFKUaBVN6ANoFkdAe8C+RYA80XV9lChoBmgJaA9DCO1l22lrJ2BAlIaUUpRoFU3oA2gWR0B74B52Qnx8dX2UKGgGaAloD0MIic+dYP/OV0CUhpRSlGgVTegDaBZHQHwFxDCxeLN1fZQoaAZoCWgPQwg+tI8VfBRhQJSGlFKUaBVN6ANoFkdAfAt6dUbT+nV9lChoBmgJaA9DCF5m2CjrRVJAlIaUUpRoFU3oA2gWR0B8E2ogmqo7dX2UKGgGaAloD0MIRdrGn6ibVkCUhpRSlGgVTegDaBZHQHwkwS8J2Md1fZQoaAZoCWgPQwhzEkpfCLVeQJSGlFKUaBVN6ANoFkdAfIX8Hv+fiHV9lChoBmgJaA9DCDF5A8x8JFtAlIaUUpRoFU3oA2gWR0B8i6QZGax5dX2UKGgGaAloD0MIBwq8k09fYUCUhpRSlGgVTegDaBZHQHynkJfICEJ1fZQoaAZoCWgPQwgydsJLcExVQJSGlFKUaBVN6ANoFkdAfKmAkcCHRHV9lChoBmgJaA9DCAdBR6va9WBAlIaUUpRoFU3oA2gWR0B8sEKKHfuUdX2UKGgGaAloD0MI2ZjXEYdhXECUhpRSlGgVTegDaBZHQHy07MC9ytF1fZQoaAZoCWgPQwja/pWVJgVZQJSGlFKUaBVN6ANoFkdAfLy/aQFLWnV9lChoBmgJaA9DCEMewY2Ul0pAlIaUUpRoFU3oA2gWR0B8xLTspobodX2UKGgGaAloD0MI0Eaum1KaSECUhpRSlGgVTegDaBZHQHzX/qgRK6F1fZQoaAZoCWgPQwhk6NhBpfNgQJSGlFKUaBVN6ANoFkdAfNwX/HYHxHV9lChoBmgJaA9DCKmHaHQHcUVAlIaUUpRoFU3oA2gWR0B87CmuTzNEdX2UKGgGaAloD0MIw/ARMSUiW0CUhpRSlGgVTegDaBZHQH0QBA8jiXJ1fZQoaAZoCWgPQwiifazgtw5SQJSGlFKUaBVN6ANoFkdAfTzhnanJk3V9lChoBmgJaA9DCK2nVl9ddl5AlIaUUpRoFU3oA2gWR0B9Q6Zx7zCldX2UKGgGaAloD0MIn8ppT8mUWkCUhpRSlGgVTegDaBZHQH1NWbobGWF1fZQoaAZoCWgPQwiN7bWgdzVpQJSGlFKUaBVN3wFoFkdAfVDE4//vOXV9lChoBmgJaA9DCBZqTfOOrF5AlIaUUpRoFU3oA2gWR0B9YXeGfwqidX2UKGgGaAloD0MINgadELp+YUCUhpRSlGgVTegDaBZHQH3FPYODrZ91fZQoaAZoCWgPQwhsXtVZLf5hQJSGlFKUaBVN6ANoFkdAfcuPzWf9P3V9lChoBmgJaA9DCOksswhF5WJAlIaUUpRoFU3oA2gWR0B96t+qioKldX2UKGgGaAloD0MIJNQMqaJ7UECUhpRSlGgVTegDaBZHQH3s739JjDt1fZQoaAZoCWgPQwgEc/T4PQ9jQJSGlFKUaBVN6ANoFkdAffRAskIHDHV9lChoBmgJaA9DCCHM7V5usmRAlIaUUpRoFU3oA2gWR0B9+YO9WZJDdX2UKGgGaAloD0MIFLNeDOUCYkCUhpRSlGgVTegDaBZHQH4CIGIKtxN1fZQoaAZoCWgPQwiaQBGLGI1gQJSGlFKUaBVN6ANoFkdAfgm6gM+eOHV9lChoBmgJaA9DCDY+k/3zAWZAlIaUUpRoFU0JAmgWR0B+DMlKK509dX2UKGgGaAloD0MIOul942uSYUCUhpRSlGgVTegDaBZHQH4f+GfwqiJ1fZQoaAZoCWgPQwh716AvvZVYQJSGlFKUaBVN6ANoFkdAfjC8n/kvK3V9lChoBmgJaA9DCFjjbDoCIERAlIaUUpRoFUvyaBZHQH42m7jDKo11fZQoaAZoCWgPQwjvqZz2lFQ2wJSGlFKUaBVNPAFoFkdAfj7mVJL/THV9lChoBmgJaA9DCHdlFwyutl1AlIaUUpRoFU3oA2gWR0B+Uzu1F6RhdX2UKGgGaAloD0MIPKWD9X9+LUCUhpRSlGgVTR8BaBZHQH5+Uq+ajN91fZQoaAZoCWgPQwjLgR5qW/NhQJSGlFKUaBVN6ANoFkdAfoQ1Oj7AL3V9lChoBmgJaA9DCBIT1PAtBV9AlIaUUpRoFU3oA2gWR0B+jXMTviLmdX2UKGgGaAloD0MIUwQ4vQuvZECUhpRSlGgVTegDaBZHQH6Qlk1/DtR1fZQoaAZoCWgPQwiFKF/QQstdQJSGlFKUaBVN6ANoFkdAfqA4eLehwnV9lChoBmgJaA9DCM+/XfZrOGNAlIaUUpRoFU3oA2gWR0B/BPRsuWa+dX2UKGgGaAloD0MITZ6ymq4fYECUhpRSlGgVTegDaBZHQH8K8BdUsFt1fZQoaAZoCWgPQwhi9NxCV5laQJSGlFKUaBVN6ANoFkdAfyeyI55qunV9lChoBmgJaA9DCC7L12X4EVhAlIaUUpRoFU3oA2gWR0B/KZZV4oqkdX2UKGgGaAloD0MIHk5gOq1NYUCUhpRSlGgVTegDaBZHQH8we2mYSg51fZQoaAZoCWgPQwhpcjEG1pEDQJSGlFKUaBVL7WgWR0B/Q4vqTr3TdX2UKGgGaAloD0MI3QvMCkWaWkCUhpRSlGgVTegDaBZHQH9GamfoRqZ1fZQoaAZoCWgPQwihuU4jLdBeQJSGlFKUaBVN6ANoFkdAf0mZSNwR5HV9lChoBmgJaA9DCFRVaCCWAWJAlIaUUpRoFU3oA2gWR0B/XRt65XlsdX2UKGgGaAloD0MIU3sRbcebYUCUhpRSlGgVTegDaBZHQH9tKzzErG11fZQoaAZoCWgPQwi9OVyrPdRlQJSGlFKUaBVN6ANoFkdAf3t9jgAIY3V9lChoBmgJaA9DCEFIFjCB/V9AlIaUUpRoFU3oA2gWR0B/j7v+fh/BdX2UKGgGaAloD0MIscQDyiaIZECUhpRSlGgVTegDaBZHQH+695Y5ksl1fZQoaAZoCWgPQwgfniXICOBcQJSGlFKUaBVN6ANoFkdAf8Ez41xbS3V9lChoBmgJaA9DCHGRe7o6/WBAlIaUUpRoFU3oA2gWR0B/yoxdpqREdX2UKGgGaAloD0MISZ9W0R+wX0CUhpRSlGgVTegDaBZHQH/OD7uUliV1fZQoaAZoCWgPQwgWNC2xMtZkQJSGlFKUaBVN6ANoFkdAf95BC2MKkXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f299896fca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f299896fd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f299896fdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f299896fe50>", "_build": "<function ActorCriticPolicy._build at 0x7f299896fee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f299896ff70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2998973040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f29989730d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2998973160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f29989731f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2998973280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2998967f30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672147959247711049, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJry/Tx7YNm6bC+fvICBnDwXzsK7J4OFPQAAgD8AAIA/ZghnvAqwP7vCpI87cc5KPIbpoLxG7zE9AACAPwAAgD+A+Bu916NfuV+OnLf3kBuzsMWoO1BZuzYAAIA/AACAP3OQ1r173IS6XS0auuaZSDUzGP06ToEvOQAAgD8AAAAAM9kEvMOJG7ozXVy5JpGps7U9YLsGJH44AACAPwAAgD8zB9G94QSDuhyRDTsCwOA3YpmuOlBg0bYAAIA/AAAAAHPpsz3hNJi6mtHjtyt6vrL16VG6r9MDNwAAgD8AAIA/M9SCvShAwz5ca7s9gEJ4vgEKMjuVxSa9AAAAAAAAAAAaNSg90iaPP2jf1z27Qby+DKyMPBSOyb0AAAAAAAAAADMd57xcZyC6vjXCuvHyobU3VRu7+3rnOQAAgD8AAIA/5pYdveHAirpab3I7aMWGOHEYkbqnXBK6AACAPwAAgD+aqNm89lRvupDvZjg3HGu1XrNQu9uUhrcAAIA/AACAPzPbobyuraW6TiPPOoZoxDW5cpw5Fn7uuQAAgD8AAIA/phLhPT8fBT8NYCa+R7OZvlwaE72K3fE8AAAAAAAAAADNXYi9w/EruiMZlLlpHZK2row6O+AirTgAAIA/AACAPwDBh7yPJkG6A3z2Otq1p7Xthka7VtgRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQE6YMBopYUCUhpRSlIwBbJRN6AOMAXSUR0CPOZd0q6OHdX2UKGgGaAloD0MIgA2IENeBYUCUhpRSlGgVTegDaBZHQI9J2JtSAH51fZQoaAZoCWgPQwgQsiyY+A5kQJSGlFKUaBVN6ANoFkdAj02YoiLVF3V9lChoBmgJaA9DCE93nnjO8WJAlIaUUpRoFU3oA2gWR0CPUZ1SOzY3dX2UKGgGaAloD0MIWipvRzg/YkCUhpRSlGgVTegDaBZHQI9SIM2FWXF1fZQoaAZoCWgPQwgDz72HyzFpQJSGlFKUaBVN6ANoFkdAj1ideQdS23V9lChoBmgJaA9DCNdrelDQXGVAlIaUUpRoFU3oA2gWR0CPXDsolUqAdX2UKGgGaAloD0MIu5f75KiZY0CUhpRSlGgVTegDaBZHQI9fbINmUW51fZQoaAZoCWgPQwgRixh2mFhhQJSGlFKUaBVN6ANoFkdAj2alByCFsnV9lChoBmgJaA9DCA2Jeyx9+15AlIaUUpRoFU3oA2gWR0CPblCVKPGRdX2UKGgGaAloD0MI7mDEPoFAZkCUhpRSlGgVTegDaBZHQI90HXTVlPJ1fZQoaAZoCWgPQwhe9YB5SBdgQJSGlFKUaBVN6ANoFkdAj3cOM2m52HV9lChoBmgJaA9DCI/DYP4KLV9AlIaUUpRoFU3oA2gWR0CPeZ1yNn5BdX2UKGgGaAloD0MIQUerWtIFY0CUhpRSlGgVTegDaBZHQI+EaSRr8BN1fZQoaAZoCWgPQwi3C811GqtlQJSGlFKUaBVN6ANoFkdAj5CRVAAyVXV9lChoBmgJaA9DCDxKJTyhs0hAlIaUUpRoFUveaBZHQI+RYeeWfK91fZQoaAZoCWgPQwhJu9HHfI1nQJSGlFKUaBVN6ANoFkdAj8GZM+NcW3V9lChoBmgJaA9DCO3Vx0PfIGRAlIaUUpRoFU3oA2gWR0CPyTYjjaPCdX2UKGgGaAloD0MIuFz92CTQZkCUhpRSlGgVTegDaBZHQI/Z4xcmjTN1fZQoaAZoCWgPQwivIqMDkvBjQJSGlFKUaBVN6ANoFkdAj92AlOXVsnV9lChoBmgJaA9DCLZHb7iP0mVAlIaUUpRoFU3oA2gWR0CP4XEsrd30dX2UKGgGaAloD0MIDvYmhuRMYkCUhpRSlGgVTegDaBZHQI/h6/TLGJh1fZQoaAZoCWgPQwibqntkc8BeQJSGlFKUaBVN6ANoFkdAj+e+XZ5AyHV9lChoBmgJaA9DCB1WuOUjiGNAlIaUUpRoFU3oA2gWR0CP6vlnyup0dX2UKGgGaAloD0MIA+yjU1eaXkCUhpRSlGgVTegDaBZHQI/uH7pFCsx1fZQoaAZoCWgPQwjb3m5JjjdmQJSGlFKUaBVN6ANoFkdAj/VEN4JNTXV9lChoBmgJaA9DCKN5AIv8KWNAlIaUUpRoFU3oA2gWR0CP/HV4HHFQdX2UKGgGaAloD0MIF4GxvgFtYkCUhpRSlGgVTegDaBZHQJABCSSvC/J1fZQoaAZoCWgPQwiatKm6xxhmQJSGlFKUaBVN6ANoFkdAkAKAUQCjlHV9lChoBmgJaA9DCBo1XyUfvWNAlIaUUpRoFU3oA2gWR0CQCWCzkZJkdX2UKGgGaAloD0MIMlab/1fwZkCUhpRSlGgVTegDaBZHQJAQWF23azx1fZQoaAZoCWgPQwhUxOkk2/1jQJSGlFKUaBVN6ANoFkdAkBDEFSsKcHV9lChoBmgJaA9DCPUwtDq5HWVAlIaUUpRoFU3oA2gWR0CQKWVz6rNodX2UKGgGaAloD0MIOX6oNGIkY0CUhpRSlGgVTegDaBZHQJAtiz2OAAh1fZQoaAZoCWgPQwgKKxVU1LFkQJSGlFKUaBVN6ANoFkdAkDZTWsijcnV9lChoBmgJaA9DCNDtJY3Rpl1AlIaUUpRoFU3oA2gWR0CQOEER8MNMdX2UKGgGaAloD0MIswjFVlD6YUCUhpRSlGgVTegDaBZHQJA6QVi4J/p1fZQoaAZoCWgPQwjikXh5um9lQJSGlFKUaBVN6ANoFkdAkDqBWLgn+nV9lChoBmgJaA9DCD9Tr1sEL2RAlIaUUpRoFU3oA2gWR0CQPYSJj2BbdX2UKGgGaAloD0MIQbtDigE6ZECUhpRSlGgVTegDaBZHQJA/Naq0dBB1fZQoaAZoCWgPQwjek4eFWs1eQJSGlFKUaBVN6ANoFkdAkEC7OJLuhXV9lChoBmgJaA9DCDsah/rdtGNAlIaUUpRoFU3oA2gWR0CQRBL127nQdX2UKGgGaAloD0MISWjLuRRQXkCUhpRSlGgVTegDaBZHQJBHrSKFZgZ1fZQoaAZoCWgPQwjYZmMl5q5kQJSGlFKUaBVN6ANoFkdAkEqB5C4SYnV9lChoBmgJaA9DCIS53cv9QmRAlIaUUpRoFU3oA2gWR0CQTBaqjrRjdX2UKGgGaAloD0MI4C77dSfBY0CUhpRSlGgVTegDaBZHQJBStrTH80l1fZQoaAZoCWgPQwhqoWRyamJjQJSGlFKUaBVN6ANoFkdAkFlsTJyQxXV9lChoBmgJaA9DCNODglI08GhAlIaUUpRoFU3oA2gWR0CQWc8MNMGpdX2UKGgGaAloD0MIhzJUxdSiYECUhpRSlGgVTegDaBZHQJByYVdonKJ1fZQoaAZoCWgPQwgaprbUwRFjQJSGlFKUaBVN6ANoFkdAkHZpKnNxEXV9lChoBmgJaA9DCBfX+Ez2KWRAlIaUUpRoFU3oA2gWR0CQf3w71ZkkdX2UKGgGaAloD0MItJCA0WVKYECUhpRSlGgVTegDaBZHQJCBqU6gdwN1fZQoaAZoCWgPQwhgIt46fwdmQJSGlFKUaBVN6ANoFkdAkIP2ZAprlHV9lChoBmgJaA9DCCYeUDblFmhAlIaUUpRoFU3oA2gWR0CQhD89wFTvdX2UKGgGaAloD0MIEDtT6LwXX0CUhpRSlGgVTegDaBZHQJCHzf51vEV1fZQoaAZoCWgPQwiiQ+BIIM5lQJSGlFKUaBVN6ANoFkdAkImqlHjIaXV9lChoBmgJaA9DCKLPRxnxfWFAlIaUUpRoFU3oA2gWR0CQi17ihnJ1dX2UKGgGaAloD0MISKeufJbxYUCUhpRSlGgVTegDaBZHQJCO9yXD3uh1fZQoaAZoCWgPQwhRFr6+1mtlQJSGlFKUaBVN6ANoFkdAkJK/2wmmcnV9lChoBmgJaA9DCEKUL2ghGlJAlIaUUpRoFUvgaBZHQJCTdymygPF1fZQoaAZoCWgPQwjEQUKUr75jQJSGlFKUaBVN6ANoFkdAkJXJiAlOXXV9lChoBmgJaA9DCNczhGOWN2dAlIaUUpRoFU3oA2gWR0CQl1URnOB2dX2UKGgGaAloD0MIOj/FcSAlcUCUhpRSlGgVTYACaBZHQJCaCk56t1Z1fZQoaAZoCWgPQwjXFwltOR8pwJSGlFKUaBVLvGgWR0CQnNIhhYvGdX2UKGgGaAloD0MImUhpNo9AYkCUhpRSlGgVTegDaBZHQJCdu6Ymb9Z1fZQoaAZoCWgPQwgJGF3eHAZkQJSGlFKUaBVN6ANoFkdAkKPlp48lonV9lChoBmgJaA9DCHUEcLP48WBAlIaUUpRoFU3oA2gWR0CQpEfQa72+dX2UKGgGaAloD0MIKxa/Kaz1Y0CUhpRSlGgVTegDaBZHQJCpbIlt0mt1fZQoaAZoCWgPQwhVvfxOEzRhQJSGlFKUaBVN6ANoFkdAkMpiOWBz3nV9lChoBmgJaA9DCCr/Wl65Q2VAlIaUUpRoFU3oA2gWR0CQzHJJGvwFdX2UKGgGaAloD0MISN3OvnKpYkCUhpRSlGgVTegDaBZHQJDOuY4Qz1t1fZQoaAZoCWgPQwhiEcMOY3hjQJSGlFKUaBVN6ANoFkdAkM79vS+g13V9lChoBmgJaA9DCPWgoBSt8l9AlIaUUpRoFU3oA2gWR0CQ09NmDlHSdX2UKGgGaAloD0MIOxxdpTvpYUCUhpRSlGgVTegDaBZHQJDVdtuUD+11fZQoaAZoCWgPQwhIMUCiCbluQJSGlFKUaBVNKwNoFkdAkNc76pHZsnV9lChoBmgJaA9DCHv5nSazfGZAlIaUUpRoFU3oA2gWR0CQ2NQRPGhmdX2UKGgGaAloD0MIl6yKcJNcY0CUhpRSlGgVTegDaBZHQJDcxiPQv6F1fZQoaAZoCWgPQwguOllqvVdlQJSGlFKUaBVN6ANoFkdAkN7ElZ5iVnV9lChoBmgJaA9DCPW7sDXbGGVAlIaUUpRoFU3oA2gWR0CQ4qId2gWadX2UKGgGaAloD0MIOrAcIQP4XkCUhpRSlGgVTegDaBZHQJDlcdHUc4p1fZQoaAZoCWgPQwiHTs+7sSpkQJSGlFKUaBVN6ANoFkdAkOZWPgeijHV9lChoBmgJaA9DCCno9pJG0mJAlIaUUpRoFU3oA2gWR0CQ7COKfnOjdX2UKGgGaAloD0MIqvOo+L/AXkCUhpRSlGgVTegDaBZHQJDsfXDm8ul1fZQoaAZoCWgPQwgudZDXA5BjQJSGlFKUaBVN6ANoFkdAkPD+H8CPqHV9lChoBmgJaA9DCHl0IyyqXmBAlIaUUpRoFU3oA2gWR0CREAB3A2ycdX2UKGgGaAloD0MIahZod0jIZkCUhpRSlGgVTegDaBZHQJERxQYUFjd1fZQoaAZoCWgPQwhRS3MrhIZgQJSGlFKUaBVN6ANoFkdAkROH7YTTOXV9lChoBmgJaA9DCKT+eoWFpmNAlIaUUpRoFU3oA2gWR0CRE7+R5kbxdX2UKGgGaAloD0MIhSNIpVhOYUCUhpRSlGgVTegDaBZHQJEX1um78Nx1fZQoaAZoCWgPQwhw0clSa5ZmQJSGlFKUaBVN6ANoFkdAkRkwezUqhHV9lChoBmgJaA9DCKwBSkMNtmVAlIaUUpRoFU3oA2gWR0CRGqzYEnstdX2UKGgGaAloD0MIIGEYsORmYkCUhpRSlGgVTegDaBZHQJEb8jOcDr91fZQoaAZoCWgPQwinsijsInpkQJSGlFKUaBVN6ANoFkdAkR84q9XcQHV9lChoBmgJaA9DCK+w4H7ADmZAlIaUUpRoFU3oA2gWR0CRIPPUKArhdX2UKGgGaAloD0MIB5j5Dv56YkCUhpRSlGgVTegDaBZHQJEkWjfvWpZ1fZQoaAZoCWgPQwjiytk7IwFjQJSGlFKUaBVN6ANoFkdAkSbDQ7cO9XV9lChoBmgJaA9DCAKdSZsqP2RAlIaUUpRoFU3oA2gWR0CRJ4/J/5LzdX2UKGgGaAloD0MInfF9cakTX0CUhpRSlGgVTegDaBZHQJEsxjWkJrt1fZQoaAZoCWgPQwhPyTmxB/piQJSGlFKUaBVN6ANoFkdAkS0X6l+Ey3V9lChoBmgJaA9DCBVWKqgo4mVAlIaUUpRoFU3oA2gWR0CRMXaWX1J2dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2bed9a61a9f0ea2f1aaf54718873c69cc76e0c92890e04689cb34a39f088fe51
3
- size 147208
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:365b583e2723e048d2bde47a66714d60ffe3106b224ca9dc1f111adda9315ba0
3
+ size 147214
ppo-LunarLander-v2/data CHANGED
@@ -42,12 +42,12 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 507904,
46
- "_total_timesteps": 500000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1672144556733398893,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrDib3DsW66BmoHPIKBJraX1487KYMatQAAgD8AAIA/4MNmvhRi27phhxc6BEMgPTlJbjxlNd85AACAPwAAgD+YNty+i8hKPxqpTj3mZ6a+rMMhva573T0AAAAAAAAAANqXr70pWF66OkziOkTOAzaasmE5UqgAugAAgD8AAIA/Syeevky1kj90z4C+dfKFvne9XL5KbSS9AAAAAAAAAACzQrw9j+ZNutj8vTuWXhc2o/lHuxNuFDUAAIA/AACAP01VU732XHC6apJOurGxkLYOh4e6QhdvOQAAgD8AAIA/moWDvYTbPz65x609EvgXvhkp170iwI49AAAAAAAAAACa6Ua9CqcwuTJlFzwr+iU3T6abuZw2KzYAAIA/AACAP5MTUj7hIb8+ihETvpG8Ib7pFk870aGUuwAAAAAAAAAAzVGkvrHOGD92J4A+iY5DvukGAL3LAQg9AAAAAAAAAACaVUY84XKKuq0+cblvW6e0ZQoCO9IpiTgAAIA/AACAP5pEdL32+HO6VtCEOx5GjjXQ7Pw6t/eZugAAgD8AAIA/s8RKPRRshrpdqwi8U1cMN80Jn7pAs3m2AACAPwAAgD8gJgE+e5TfN2GSErtgiau3iFn2Oz0kLDoAAIA/AACAP6bPsL17VIW6gPnZOnX6oDbUkPw6sD/0uQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,13 +69,13 @@
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIldi1vV0/YECUhpRSlIwBbJRN6AOMAXSUR0B5XRxYJVsDdX2UKGgGaAloD0MI78nDQq09VkCUhpRSlGgVTegDaBZHQHlrbNbC79R1fZQoaAZoCWgPQwjTiJl9HktIwJSGlFKUaBVNIwFoFkdAeW50elsP8XV9lChoBmgJaA9DCKg4Drxa8FFAlIaUUpRoFU3oA2gWR0B5cUOc2BJ7dX2UKGgGaAloD0MIycaDLXa/WECUhpRSlGgVTegDaBZHQHmRD7l7tzF1fZQoaAZoCWgPQwhUVP1K51dKQJSGlFKUaBVN6ANoFkdAeZgfZElVtHV9lChoBmgJaA9DCBwJNNjUwl9AlIaUUpRoFU3oA2gWR0B5mxf8dgfEdX2UKGgGaAloD0MIFoczvxoKZUCUhpRSlGgVTUEBaBZHQHmpRfrrxAl1fZQoaAZoCWgPQwiFzQAXZNZUQJSGlFKUaBVN6ANoFkdAef/ZFG5MDnV9lChoBmgJaA9DCGoUkszqBlRAlIaUUpRoFU3oA2gWR0B6COkqMFUydX2UKGgGaAloD0MIkMAffv43QcCUhpRSlGgVS91oFkdAehcbYsd1dXV9lChoBmgJaA9DCBedLLVe7GRAlIaUUpRoFU3oA2gWR0B6HQ3Ns3yadX2UKGgGaAloD0MI9inHZPHHYkCUhpRSlGgVTegDaBZHQHou92xIJ7d1fZQoaAZoCWgPQwhn74y2Kt9gQJSGlFKUaBVN6ANoFkdAekNOtnwocHV9lChoBmgJaA9DCNr/AGvV8ldAlIaUUpRoFU3oA2gWR0B6SEdbPhQ4dX2UKGgGaAloD0MIxNDq5IwgY0CUhpRSlGgVTegDaBZHQHpIy83++/R1fZQoaAZoCWgPQwjmJJS+EGJUQJSGlFKUaBVN6ANoFkdAeljpCa7Va3V9lChoBmgJaA9DCLkXmBWKg1ZAlIaUUpRoFU3oA2gWR0B6ba8+RoysdX2UKGgGaAloD0MI5x2n6EhWJsCUhpRSlGgVTRcBaBZHQHpyO8kD6nB1fZQoaAZoCWgPQwjj3vyGif4nwJSGlFKUaBVL/mgWR0B6hThXKbKBdX2UKGgGaAloD0MI8BMH0G/AYUCUhpRSlGgVTegDaBZHQHqmfNRm9QJ1fZQoaAZoCWgPQwiOk8K8x71XQJSGlFKUaBVN6ANoFkdAeqnI8yN4q3V9lChoBmgJaA9DCG6l12Zjo1VAlIaUUpRoFU3oA2gWR0B6rNoxpL26dX2UKGgGaAloD0MIWOatug6cX0CUhpRSlGgVTegDaBZHQHrPNO6/Zdx1fZQoaAZoCWgPQwgn2H+dm19aQJSGlFKUaBVN6ANoFkdAetekUKzAvnV9lChoBmgJaA9DCEfmkT8Y8EDAlIaUUpRoFUvGaBZHQHrek6xPfsN1fZQoaAZoCWgPQwjNctnonEc1wJSGlFKUaBVL9WgWR0B66AH4XXRPdX2UKGgGaAloD0MI3IDPDyPWYUCUhpRSlGgVTegDaBZHQHrtV8stkFx1fZQoaAZoCWgPQwg6dHrejZ9eQJSGlFKUaBVN6ANoFkdAe0WwGW2PUHV9lChoBmgJaA9DCGLZzCGpJmRAlIaUUpRoFU3oA2gWR0B7T4swtapxdX2UKGgGaAloD0MIUhA8vr0vNUCUhpRSlGgVS+NoFkdAe1V+SbH6uXV9lChoBmgJaA9DCAcoDTUK82BAlIaUUpRoFU3oA2gWR0B7Xikfs/pudX2UKGgGaAloD0MICqAYWTI+XkCUhpRSlGgVTegDaBZHQHtjddiUgSx1fZQoaAZoCWgPQwiRC87g7xf5P5SGlFKUaBVNKgFoFkdAe34gMc6vJXV9lChoBmgJaA9DCMN95NakTzBAlIaUUpRoFUvSaBZHQHt/7ns9jgB1fZQoaAZoCWgPQwiAnZs24zxfQJSGlFKUaBVN6ANoFkdAe4azLwF1S3V9lChoBmgJaA9DCGsPe6GAcFRAlIaUUpRoFU3oA2gWR0B7i7abnX/YdX2UKGgGaAloD0MITbwDPGlhNsCUhpRSlGgVTRMBaBZHQHuT6n3ta6l1fZQoaAZoCWgPQwj1uG+1TkhWQJSGlFKUaBVN6ANoFkdAe5t25xzaK3V9lChoBmgJaA9DCNaMDHIXYV5AlIaUUpRoFU3oA2gWR0B7rfR2KVIJdX2UKGgGaAloD0MI73TnieckYkCUhpRSlGgVTegDaBZHQHuxyh8IAwR1fZQoaAZoCWgPQwjh0cYRazthQJSGlFKUaBVN6ANoFkdAe8C+RYA80XV9lChoBmgJaA9DCO1l22lrJ2BAlIaUUpRoFU3oA2gWR0B74B52Qnx8dX2UKGgGaAloD0MIic+dYP/OV0CUhpRSlGgVTegDaBZHQHwFxDCxeLN1fZQoaAZoCWgPQwg+tI8VfBRhQJSGlFKUaBVN6ANoFkdAfAt6dUbT+nV9lChoBmgJaA9DCF5m2CjrRVJAlIaUUpRoFU3oA2gWR0B8E2ogmqo7dX2UKGgGaAloD0MIRdrGn6ibVkCUhpRSlGgVTegDaBZHQHwkwS8J2Md1fZQoaAZoCWgPQwhzEkpfCLVeQJSGlFKUaBVN6ANoFkdAfIX8Hv+fiHV9lChoBmgJaA9DCDF5A8x8JFtAlIaUUpRoFU3oA2gWR0B8i6QZGax5dX2UKGgGaAloD0MIBwq8k09fYUCUhpRSlGgVTegDaBZHQHynkJfICEJ1fZQoaAZoCWgPQwgydsJLcExVQJSGlFKUaBVN6ANoFkdAfKmAkcCHRHV9lChoBmgJaA9DCAdBR6va9WBAlIaUUpRoFU3oA2gWR0B8sEKKHfuUdX2UKGgGaAloD0MI2ZjXEYdhXECUhpRSlGgVTegDaBZHQHy07MC9ytF1fZQoaAZoCWgPQwja/pWVJgVZQJSGlFKUaBVN6ANoFkdAfLy/aQFLWnV9lChoBmgJaA9DCEMewY2Ul0pAlIaUUpRoFU3oA2gWR0B8xLTspobodX2UKGgGaAloD0MI0Eaum1KaSECUhpRSlGgVTegDaBZHQHzX/qgRK6F1fZQoaAZoCWgPQwhk6NhBpfNgQJSGlFKUaBVN6ANoFkdAfNwX/HYHxHV9lChoBmgJaA9DCKmHaHQHcUVAlIaUUpRoFU3oA2gWR0B87CmuTzNEdX2UKGgGaAloD0MIw/ARMSUiW0CUhpRSlGgVTegDaBZHQH0QBA8jiXJ1fZQoaAZoCWgPQwiifazgtw5SQJSGlFKUaBVN6ANoFkdAfTzhnanJk3V9lChoBmgJaA9DCK2nVl9ddl5AlIaUUpRoFU3oA2gWR0B9Q6Zx7zCldX2UKGgGaAloD0MIn8ppT8mUWkCUhpRSlGgVTegDaBZHQH1NWbobGWF1fZQoaAZoCWgPQwiN7bWgdzVpQJSGlFKUaBVN3wFoFkdAfVDE4//vOXV9lChoBmgJaA9DCBZqTfOOrF5AlIaUUpRoFU3oA2gWR0B9YXeGfwqidX2UKGgGaAloD0MINgadELp+YUCUhpRSlGgVTegDaBZHQH3FPYODrZ91fZQoaAZoCWgPQwhsXtVZLf5hQJSGlFKUaBVN6ANoFkdAfcuPzWf9P3V9lChoBmgJaA9DCOksswhF5WJAlIaUUpRoFU3oA2gWR0B96t+qioKldX2UKGgGaAloD0MIJNQMqaJ7UECUhpRSlGgVTegDaBZHQH3s739JjDt1fZQoaAZoCWgPQwgEc/T4PQ9jQJSGlFKUaBVN6ANoFkdAffRAskIHDHV9lChoBmgJaA9DCCHM7V5usmRAlIaUUpRoFU3oA2gWR0B9+YO9WZJDdX2UKGgGaAloD0MIFLNeDOUCYkCUhpRSlGgVTegDaBZHQH4CIGIKtxN1fZQoaAZoCWgPQwiaQBGLGI1gQJSGlFKUaBVN6ANoFkdAfgm6gM+eOHV9lChoBmgJaA9DCDY+k/3zAWZAlIaUUpRoFU0JAmgWR0B+DMlKK509dX2UKGgGaAloD0MIOul942uSYUCUhpRSlGgVTegDaBZHQH4f+GfwqiJ1fZQoaAZoCWgPQwh716AvvZVYQJSGlFKUaBVN6ANoFkdAfjC8n/kvK3V9lChoBmgJaA9DCFjjbDoCIERAlIaUUpRoFUvyaBZHQH42m7jDKo11fZQoaAZoCWgPQwjvqZz2lFQ2wJSGlFKUaBVNPAFoFkdAfj7mVJL/THV9lChoBmgJaA9DCHdlFwyutl1AlIaUUpRoFU3oA2gWR0B+Uzu1F6RhdX2UKGgGaAloD0MIPKWD9X9+LUCUhpRSlGgVTR8BaBZHQH5+Uq+ajN91fZQoaAZoCWgPQwjLgR5qW/NhQJSGlFKUaBVN6ANoFkdAfoQ1Oj7AL3V9lChoBmgJaA9DCBIT1PAtBV9AlIaUUpRoFU3oA2gWR0B+jXMTviLmdX2UKGgGaAloD0MIUwQ4vQuvZECUhpRSlGgVTegDaBZHQH6Qlk1/DtR1fZQoaAZoCWgPQwiFKF/QQstdQJSGlFKUaBVN6ANoFkdAfqA4eLehwnV9lChoBmgJaA9DCM+/XfZrOGNAlIaUUpRoFU3oA2gWR0B/BPRsuWa+dX2UKGgGaAloD0MITZ6ymq4fYECUhpRSlGgVTegDaBZHQH8K8BdUsFt1fZQoaAZoCWgPQwhi9NxCV5laQJSGlFKUaBVN6ANoFkdAfyeyI55qunV9lChoBmgJaA9DCC7L12X4EVhAlIaUUpRoFU3oA2gWR0B/KZZV4oqkdX2UKGgGaAloD0MIHk5gOq1NYUCUhpRSlGgVTegDaBZHQH8we2mYSg51fZQoaAZoCWgPQwhpcjEG1pEDQJSGlFKUaBVL7WgWR0B/Q4vqTr3TdX2UKGgGaAloD0MI3QvMCkWaWkCUhpRSlGgVTegDaBZHQH9GamfoRqZ1fZQoaAZoCWgPQwihuU4jLdBeQJSGlFKUaBVN6ANoFkdAf0mZSNwR5HV9lChoBmgJaA9DCFRVaCCWAWJAlIaUUpRoFU3oA2gWR0B/XRt65XlsdX2UKGgGaAloD0MIU3sRbcebYUCUhpRSlGgVTegDaBZHQH9tKzzErG11fZQoaAZoCWgPQwi9OVyrPdRlQJSGlFKUaBVN6ANoFkdAf3t9jgAIY3V9lChoBmgJaA9DCEFIFjCB/V9AlIaUUpRoFU3oA2gWR0B/j7v+fh/BdX2UKGgGaAloD0MIscQDyiaIZECUhpRSlGgVTegDaBZHQH+695Y5ksl1fZQoaAZoCWgPQwgfniXICOBcQJSGlFKUaBVN6ANoFkdAf8Ez41xbS3V9lChoBmgJaA9DCHGRe7o6/WBAlIaUUpRoFU3oA2gWR0B/yoxdpqREdX2UKGgGaAloD0MISZ9W0R+wX0CUhpRSlGgVTegDaBZHQH/OD7uUliV1fZQoaAZoCWgPQwgWNC2xMtZkQJSGlFKUaBVN6ANoFkdAf95BC2MKkXVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 124,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1672147959247711049,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJry/Tx7YNm6bC+fvICBnDwXzsK7J4OFPQAAgD8AAIA/ZghnvAqwP7vCpI87cc5KPIbpoLxG7zE9AACAPwAAgD+A+Bu916NfuV+OnLf3kBuzsMWoO1BZuzYAAIA/AACAP3OQ1r173IS6XS0auuaZSDUzGP06ToEvOQAAgD8AAAAAM9kEvMOJG7ozXVy5JpGps7U9YLsGJH44AACAPwAAgD8zB9G94QSDuhyRDTsCwOA3YpmuOlBg0bYAAIA/AAAAAHPpsz3hNJi6mtHjtyt6vrL16VG6r9MDNwAAgD8AAIA/M9SCvShAwz5ca7s9gEJ4vgEKMjuVxSa9AAAAAAAAAAAaNSg90iaPP2jf1z27Qby+DKyMPBSOyb0AAAAAAAAAADMd57xcZyC6vjXCuvHyobU3VRu7+3rnOQAAgD8AAIA/5pYdveHAirpab3I7aMWGOHEYkbqnXBK6AACAPwAAgD+aqNm89lRvupDvZjg3HGu1XrNQu9uUhrcAAIA/AACAPzPbobyuraW6TiPPOoZoxDW5cpw5Fn7uuQAAgD8AAIA/phLhPT8fBT8NYCa+R7OZvlwaE72K3fE8AAAAAAAAAADNXYi9w/EruiMZlLlpHZK2row6O+AirTgAAIA/AACAPwDBh7yPJkG6A3z2Otq1p7Xthka7VtgRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_current_progress_remaining": -0.015808000000000044,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQE6YMBopYUCUhpRSlIwBbJRN6AOMAXSUR0CPOZd0q6OHdX2UKGgGaAloD0MIgA2IENeBYUCUhpRSlGgVTegDaBZHQI9J2JtSAH51fZQoaAZoCWgPQwgQsiyY+A5kQJSGlFKUaBVN6ANoFkdAj02YoiLVF3V9lChoBmgJaA9DCE93nnjO8WJAlIaUUpRoFU3oA2gWR0CPUZ1SOzY3dX2UKGgGaAloD0MIWipvRzg/YkCUhpRSlGgVTegDaBZHQI9SIM2FWXF1fZQoaAZoCWgPQwgDz72HyzFpQJSGlFKUaBVN6ANoFkdAj1ideQdS23V9lChoBmgJaA9DCNdrelDQXGVAlIaUUpRoFU3oA2gWR0CPXDsolUqAdX2UKGgGaAloD0MIu5f75KiZY0CUhpRSlGgVTegDaBZHQI9fbINmUW51fZQoaAZoCWgPQwgRixh2mFhhQJSGlFKUaBVN6ANoFkdAj2alByCFsnV9lChoBmgJaA9DCA2Jeyx9+15AlIaUUpRoFU3oA2gWR0CPblCVKPGRdX2UKGgGaAloD0MI7mDEPoFAZkCUhpRSlGgVTegDaBZHQI90HXTVlPJ1fZQoaAZoCWgPQwhe9YB5SBdgQJSGlFKUaBVN6ANoFkdAj3cOM2m52HV9lChoBmgJaA9DCI/DYP4KLV9AlIaUUpRoFU3oA2gWR0CPeZ1yNn5BdX2UKGgGaAloD0MIQUerWtIFY0CUhpRSlGgVTegDaBZHQI+EaSRr8BN1fZQoaAZoCWgPQwi3C811GqtlQJSGlFKUaBVN6ANoFkdAj5CRVAAyVXV9lChoBmgJaA9DCDxKJTyhs0hAlIaUUpRoFUveaBZHQI+RYeeWfK91fZQoaAZoCWgPQwhJu9HHfI1nQJSGlFKUaBVN6ANoFkdAj8GZM+NcW3V9lChoBmgJaA9DCO3Vx0PfIGRAlIaUUpRoFU3oA2gWR0CPyTYjjaPCdX2UKGgGaAloD0MIuFz92CTQZkCUhpRSlGgVTegDaBZHQI/Z4xcmjTN1fZQoaAZoCWgPQwivIqMDkvBjQJSGlFKUaBVN6ANoFkdAj92AlOXVsnV9lChoBmgJaA9DCLZHb7iP0mVAlIaUUpRoFU3oA2gWR0CP4XEsrd30dX2UKGgGaAloD0MIDvYmhuRMYkCUhpRSlGgVTegDaBZHQI/h6/TLGJh1fZQoaAZoCWgPQwibqntkc8BeQJSGlFKUaBVN6ANoFkdAj+e+XZ5AyHV9lChoBmgJaA9DCB1WuOUjiGNAlIaUUpRoFU3oA2gWR0CP6vlnyup0dX2UKGgGaAloD0MIA+yjU1eaXkCUhpRSlGgVTegDaBZHQI/uH7pFCsx1fZQoaAZoCWgPQwjb3m5JjjdmQJSGlFKUaBVN6ANoFkdAj/VEN4JNTXV9lChoBmgJaA9DCKN5AIv8KWNAlIaUUpRoFU3oA2gWR0CP/HV4HHFQdX2UKGgGaAloD0MIF4GxvgFtYkCUhpRSlGgVTegDaBZHQJABCSSvC/J1fZQoaAZoCWgPQwiatKm6xxhmQJSGlFKUaBVN6ANoFkdAkAKAUQCjlHV9lChoBmgJaA9DCBo1XyUfvWNAlIaUUpRoFU3oA2gWR0CQCWCzkZJkdX2UKGgGaAloD0MIMlab/1fwZkCUhpRSlGgVTegDaBZHQJAQWF23azx1fZQoaAZoCWgPQwhUxOkk2/1jQJSGlFKUaBVN6ANoFkdAkBDEFSsKcHV9lChoBmgJaA9DCPUwtDq5HWVAlIaUUpRoFU3oA2gWR0CQKWVz6rNodX2UKGgGaAloD0MIOX6oNGIkY0CUhpRSlGgVTegDaBZHQJAtiz2OAAh1fZQoaAZoCWgPQwgKKxVU1LFkQJSGlFKUaBVN6ANoFkdAkDZTWsijcnV9lChoBmgJaA9DCNDtJY3Rpl1AlIaUUpRoFU3oA2gWR0CQOEER8MNMdX2UKGgGaAloD0MIswjFVlD6YUCUhpRSlGgVTegDaBZHQJA6QVi4J/p1fZQoaAZoCWgPQwjikXh5um9lQJSGlFKUaBVN6ANoFkdAkDqBWLgn+nV9lChoBmgJaA9DCD9Tr1sEL2RAlIaUUpRoFU3oA2gWR0CQPYSJj2BbdX2UKGgGaAloD0MIQbtDigE6ZECUhpRSlGgVTegDaBZHQJA/Naq0dBB1fZQoaAZoCWgPQwjek4eFWs1eQJSGlFKUaBVN6ANoFkdAkEC7OJLuhXV9lChoBmgJaA9DCDsah/rdtGNAlIaUUpRoFU3oA2gWR0CQRBL127nQdX2UKGgGaAloD0MISWjLuRRQXkCUhpRSlGgVTegDaBZHQJBHrSKFZgZ1fZQoaAZoCWgPQwjYZmMl5q5kQJSGlFKUaBVN6ANoFkdAkEqB5C4SYnV9lChoBmgJaA9DCIS53cv9QmRAlIaUUpRoFU3oA2gWR0CQTBaqjrRjdX2UKGgGaAloD0MI4C77dSfBY0CUhpRSlGgVTegDaBZHQJBStrTH80l1fZQoaAZoCWgPQwhqoWRyamJjQJSGlFKUaBVN6ANoFkdAkFlsTJyQxXV9lChoBmgJaA9DCNODglI08GhAlIaUUpRoFU3oA2gWR0CQWc8MNMGpdX2UKGgGaAloD0MIhzJUxdSiYECUhpRSlGgVTegDaBZHQJByYVdonKJ1fZQoaAZoCWgPQwgaprbUwRFjQJSGlFKUaBVN6ANoFkdAkHZpKnNxEXV9lChoBmgJaA9DCBfX+Ez2KWRAlIaUUpRoFU3oA2gWR0CQf3w71ZkkdX2UKGgGaAloD0MItJCA0WVKYECUhpRSlGgVTegDaBZHQJCBqU6gdwN1fZQoaAZoCWgPQwhgIt46fwdmQJSGlFKUaBVN6ANoFkdAkIP2ZAprlHV9lChoBmgJaA9DCCYeUDblFmhAlIaUUpRoFU3oA2gWR0CQhD89wFTvdX2UKGgGaAloD0MIEDtT6LwXX0CUhpRSlGgVTegDaBZHQJCHzf51vEV1fZQoaAZoCWgPQwiiQ+BIIM5lQJSGlFKUaBVN6ANoFkdAkImqlHjIaXV9lChoBmgJaA9DCKLPRxnxfWFAlIaUUpRoFU3oA2gWR0CQi17ihnJ1dX2UKGgGaAloD0MISKeufJbxYUCUhpRSlGgVTegDaBZHQJCO9yXD3uh1fZQoaAZoCWgPQwhRFr6+1mtlQJSGlFKUaBVN6ANoFkdAkJK/2wmmcnV9lChoBmgJaA9DCEKUL2ghGlJAlIaUUpRoFUvgaBZHQJCTdymygPF1fZQoaAZoCWgPQwjEQUKUr75jQJSGlFKUaBVN6ANoFkdAkJXJiAlOXXV9lChoBmgJaA9DCNczhGOWN2dAlIaUUpRoFU3oA2gWR0CQl1URnOB2dX2UKGgGaAloD0MIOj/FcSAlcUCUhpRSlGgVTYACaBZHQJCaCk56t1Z1fZQoaAZoCWgPQwjXFwltOR8pwJSGlFKUaBVLvGgWR0CQnNIhhYvGdX2UKGgGaAloD0MImUhpNo9AYkCUhpRSlGgVTegDaBZHQJCdu6Ymb9Z1fZQoaAZoCWgPQwgJGF3eHAZkQJSGlFKUaBVN6ANoFkdAkKPlp48lonV9lChoBmgJaA9DCHUEcLP48WBAlIaUUpRoFU3oA2gWR0CQpEfQa72+dX2UKGgGaAloD0MIKxa/Kaz1Y0CUhpRSlGgVTegDaBZHQJCpbIlt0mt1fZQoaAZoCWgPQwhVvfxOEzRhQJSGlFKUaBVN6ANoFkdAkMpiOWBz3nV9lChoBmgJaA9DCCr/Wl65Q2VAlIaUUpRoFU3oA2gWR0CQzHJJGvwFdX2UKGgGaAloD0MISN3OvnKpYkCUhpRSlGgVTegDaBZHQJDOuY4Qz1t1fZQoaAZoCWgPQwhiEcMOY3hjQJSGlFKUaBVN6ANoFkdAkM79vS+g13V9lChoBmgJaA9DCPWgoBSt8l9AlIaUUpRoFU3oA2gWR0CQ09NmDlHSdX2UKGgGaAloD0MIOxxdpTvpYUCUhpRSlGgVTegDaBZHQJDVdtuUD+11fZQoaAZoCWgPQwhIMUCiCbluQJSGlFKUaBVNKwNoFkdAkNc76pHZsnV9lChoBmgJaA9DCHv5nSazfGZAlIaUUpRoFU3oA2gWR0CQ2NQRPGhmdX2UKGgGaAloD0MIl6yKcJNcY0CUhpRSlGgVTegDaBZHQJDcxiPQv6F1fZQoaAZoCWgPQwguOllqvVdlQJSGlFKUaBVN6ANoFkdAkN7ElZ5iVnV9lChoBmgJaA9DCPW7sDXbGGVAlIaUUpRoFU3oA2gWR0CQ4qId2gWadX2UKGgGaAloD0MIOrAcIQP4XkCUhpRSlGgVTegDaBZHQJDlcdHUc4p1fZQoaAZoCWgPQwiHTs+7sSpkQJSGlFKUaBVN6ANoFkdAkOZWPgeijHV9lChoBmgJaA9DCCno9pJG0mJAlIaUUpRoFU3oA2gWR0CQ7COKfnOjdX2UKGgGaAloD0MIqvOo+L/AXkCUhpRSlGgVTegDaBZHQJDsfXDm8ul1fZQoaAZoCWgPQwgudZDXA5BjQJSGlFKUaBVN6ANoFkdAkPD+H8CPqHV9lChoBmgJaA9DCHl0IyyqXmBAlIaUUpRoFU3oA2gWR0CREAB3A2ycdX2UKGgGaAloD0MIahZod0jIZkCUhpRSlGgVTegDaBZHQJERxQYUFjd1fZQoaAZoCWgPQwhRS3MrhIZgQJSGlFKUaBVN6ANoFkdAkROH7YTTOXV9lChoBmgJaA9DCKT+eoWFpmNAlIaUUpRoFU3oA2gWR0CRE7+R5kbxdX2UKGgGaAloD0MIhSNIpVhOYUCUhpRSlGgVTegDaBZHQJEX1um78Nx1fZQoaAZoCWgPQwhw0clSa5ZmQJSGlFKUaBVN6ANoFkdAkRkwezUqhHV9lChoBmgJaA9DCKwBSkMNtmVAlIaUUpRoFU3oA2gWR0CRGqzYEnstdX2UKGgGaAloD0MIIGEYsORmYkCUhpRSlGgVTegDaBZHQJEb8jOcDr91fZQoaAZoCWgPQwinsijsInpkQJSGlFKUaBVN6ANoFkdAkR84q9XcQHV9lChoBmgJaA9DCK+w4H7ADmZAlIaUUpRoFU3oA2gWR0CRIPPUKArhdX2UKGgGaAloD0MIB5j5Dv56YkCUhpRSlGgVTegDaBZHQJEkWjfvWpZ1fZQoaAZoCWgPQwjiytk7IwFjQJSGlFKUaBVN6ANoFkdAkSbDQ7cO9XV9lChoBmgJaA9DCAKdSZsqP2RAlIaUUpRoFU3oA2gWR0CRJ4/J/5LzdX2UKGgGaAloD0MInfF9cakTX0CUhpRSlGgVTegDaBZHQJEsxjWkJrt1fZQoaAZoCWgPQwhPyTmxB/piQJSGlFKUaBVN6ANoFkdAkS0X6l+Ey3V9lChoBmgJaA9DCBVWKqgo4mVAlIaUUpRoFU3oA2gWR0CRMXaWX1J2dWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 248,
79
  "n_steps": 1024,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:658b95f09dba74e744ff7b548045b924c15bcef18c31ac855db6c9c7cb5db8b6
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db490704476bb08b29ae0166a56f53d716284930a7d0d33fd19043914c10b6b7
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f999d140341210d256852aa245b5644742d3e2417e916b2703a16e6db683b303
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45040512ef6f3f37ef16080a6b147fa4aae0dd48e57e0c21b806ccba85064a90
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 216.71624764056187, "std_reward": 23.728174525281585, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T12:47:52.007800"}
 
1
+ {"mean_reward": 261.85766475071, "std_reward": 23.584332684190986, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-27T13:52:52.930466"}