vit-sports-cls

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0838
  • Accuracy: 0.9742
  • Precision: 0.9743
  • Recall: 0.9742
  • F1: 0.9741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.171 1.0 104 0.1729 0.9489 0.9493 0.9489 0.9489
0.0979 2.0 208 0.1356 0.9585 0.9597 0.9585 0.9583
0.0408 3.0 312 0.1184 0.9561 0.9571 0.9561 0.9561
0.0703 4.0 416 0.0892 0.9700 0.9701 0.9700 0.9699
0.1375 5.0 520 0.1029 0.9681 0.9683 0.9681 0.9682
0.0061 6.0 624 0.1073 0.9681 0.9688 0.9681 0.9682
0.0083 7.0 728 0.0795 0.9700 0.9701 0.9700 0.9700
0.0079 8.0 832 0.0754 0.9814 0.9816 0.9814 0.9814
0.0594 9.0 936 0.0714 0.9754 0.9756 0.9754 0.9754
0.0391 10.0 1040 0.0838 0.9742 0.9743 0.9742 0.9741

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for vieanh/vit-sports-cls

Finetuned
(783)
this model

Space using vieanh/vit-sports-cls 1