vidhi0206's picture
Add SetFit model
226a9ce verified
|
raw
history blame
7.42 kB
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: >-
      After waiting for what felt like forever for this book, I figured I would
      be greatly disappointed.
  - text: >-
      I live in an apartment building in NYC, which should be a torture test for
      technology like this.
  - text: I received 1500 count instead of 1200 which makes the deal even better!!
  - text: I wished it had the output on back instead of on the side.
  - text: >-
      What a beautiful family saga this was, and such a surprise as I had not
      read Sarah Lark before, and will of course read again
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.5492537313432836
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'It wheels easily and holds 10-15 lbs without any problems.'
  • 'VERY VERY crappy craftsmanship....I figured things would be made a little better.'
  • 'and a small red leather zipper coin pouch and wanted something just for bills.'
1
  • 'For the price that this particular seller charged for this T-shirt, the material SHOULD be HEAVY-DUTY.'
  • 'Just the right size, but wish it was a little taller in height.'
  • 'had I known what I know now, I would have bought a large heating pad for $20, and then sewn up a removeable fleece pillowcase for it.'

Evaluation

Metrics

Label Accuracy
all 0.5493

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vidhi0206/setfit-paraphrase-mpnet-amazon_cf")
# Run inference
preds = model("I wished it had the output on back instead of on the side.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 10 18.4375 29
Label Training Sample Count
0 8
1 8

Training Hyperparameters

  • batch_size: (8, 8)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0125 1 0.2026 -
0.625 50 0.0034 -

Framework Versions

  • Python: 3.8.10
  • SetFit: 1.0.3
  • Sentence Transformers: 2.3.1
  • Transformers: 4.37.2
  • PyTorch: 2.2.0+cu121
  • Datasets: 2.17.0
  • Tokenizers: 0.15.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}