esrs-bert-e
This model is a fine-tuned version of distilbert/distilroberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8013
- Accuracy: 0.8712
- F1: 0.7958
- Precision: 0.7943
- Recall: 0.8021
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.7621 | 1.0 | 585 | 0.4610 | 0.8548 | 0.7781 | 0.8023 | 0.7598 |
0.4471 | 2.0 | 1170 | 0.4754 | 0.8567 | 0.7778 | 0.8136 | 0.7524 |
0.3634 | 3.0 | 1755 | 0.4611 | 0.8678 | 0.7979 | 0.8196 | 0.7810 |
0.2771 | 4.0 | 2340 | 0.4544 | 0.8649 | 0.7827 | 0.7915 | 0.7768 |
0.2118 | 5.0 | 2925 | 0.4891 | 0.8697 | 0.8011 | 0.8137 | 0.7921 |
0.1743 | 6.0 | 3510 | 0.6238 | 0.8649 | 0.7966 | 0.8059 | 0.7893 |
0.1296 | 7.0 | 4095 | 0.6280 | 0.8611 | 0.7832 | 0.7785 | 0.7905 |
0.1011 | 8.0 | 4680 | 0.6582 | 0.8692 | 0.7974 | 0.8082 | 0.7910 |
0.075 | 9.0 | 5265 | 0.7589 | 0.8659 | 0.7905 | 0.7911 | 0.7938 |
0.059 | 10.0 | 5850 | 0.8013 | 0.8712 | 0.7958 | 0.7943 | 0.8021 |
Framework versions
- Transformers 4.53.1
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for victor-234/ESRS-BERT-E
Base model
distilbert/distilroberta-base