esrs-bert-e

This model is a fine-tuned version of distilbert/distilroberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8013
  • Accuracy: 0.8712
  • F1: 0.7958
  • Precision: 0.7943
  • Recall: 0.8021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.7621 1.0 585 0.4610 0.8548 0.7781 0.8023 0.7598
0.4471 2.0 1170 0.4754 0.8567 0.7778 0.8136 0.7524
0.3634 3.0 1755 0.4611 0.8678 0.7979 0.8196 0.7810
0.2771 4.0 2340 0.4544 0.8649 0.7827 0.7915 0.7768
0.2118 5.0 2925 0.4891 0.8697 0.8011 0.8137 0.7921
0.1743 6.0 3510 0.6238 0.8649 0.7966 0.8059 0.7893
0.1296 7.0 4095 0.6280 0.8611 0.7832 0.7785 0.7905
0.1011 8.0 4680 0.6582 0.8692 0.7974 0.8082 0.7910
0.075 9.0 5265 0.7589 0.8659 0.7905 0.7911 0.7938
0.059 10.0 5850 0.8013 0.8712 0.7958 0.7943 0.8021

Framework versions

  • Transformers 4.53.1
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.2
Downloads last month
11
Safetensors
Model size
82.1M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for victor-234/ESRS-BERT-E

Finetuned
(650)
this model