metadata
language:
- et
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- et
- robust-speech-event
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-1B - Estonian
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: et
metrics:
- name: Test WER
type: wer
value: 52.47
- name: Test CER
type: cer
value: 12.59
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sv
metrics:
- name: Test WER
type: wer
value: 61.02
- name: Test CER
type: cer
value: 21.08
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: et
metrics:
- name: Test WER
type: wer
value: 59.23
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Test Data
type: speech-recognition-community-v2/eval_data
args: et
metrics:
- name: Test WER
type: wer
value: 69.08
This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set:
- Loss: 0.8824
- Wer: 0.5246
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 25000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.0296 | 2.79 | 500 | 0.8106 | 0.8029 |
0.9339 | 5.59 | 1000 | 0.7419 | 0.7932 |
0.8925 | 8.38 | 1500 | 0.7137 | 0.7706 |
0.8484 | 11.17 | 2000 | 0.7020 | 0.7677 |
0.7521 | 13.97 | 2500 | 0.7043 | 0.7375 |
0.719 | 16.76 | 3000 | 0.6617 | 0.7428 |
0.656 | 19.55 | 3500 | 0.6388 | 0.7202 |
0.6085 | 22.35 | 4000 | 0.6211 | 0.6960 |
0.5598 | 25.14 | 4500 | 0.6132 | 0.6644 |
0.4969 | 27.93 | 5000 | 0.6065 | 0.6521 |
0.4638 | 30.73 | 5500 | 0.6978 | 0.6577 |
0.4385 | 33.52 | 6000 | 0.5994 | 0.6565 |
0.396 | 36.31 | 6500 | 0.6170 | 0.6258 |
0.3861 | 39.11 | 7000 | 0.6486 | 0.6217 |
0.3602 | 41.9 | 7500 | 0.6508 | 0.6115 |
0.3251 | 44.69 | 8000 | 0.7022 | 0.6253 |
0.3197 | 47.49 | 8500 | 0.7706 | 0.6215 |
0.3013 | 50.28 | 9000 | 0.6419 | 0.5999 |
0.2813 | 53.07 | 9500 | 0.6908 | 0.5959 |
0.286 | 55.87 | 10000 | 0.7151 | 0.5916 |
0.2645 | 58.66 | 10500 | 0.7181 | 0.5860 |
0.2535 | 61.45 | 11000 | 0.7877 | 0.5979 |
0.247 | 64.25 | 11500 | 0.8199 | 0.6129 |
0.2412 | 67.04 | 12000 | 0.7679 | 0.5884 |
0.2404 | 69.83 | 12500 | 0.7266 | 0.5816 |
0.2293 | 72.63 | 13000 | 0.7928 | 0.5795 |
0.2176 | 75.42 | 13500 | 0.7916 | 0.5846 |
0.2143 | 78.21 | 14000 | 0.7954 | 0.5765 |
0.2185 | 81.01 | 14500 | 0.8317 | 0.5907 |
0.2057 | 83.8 | 15000 | 0.8016 | 0.5851 |
0.1895 | 86.59 | 15500 | 0.8080 | 0.5679 |
0.1883 | 89.39 | 16000 | 0.8103 | 0.5712 |
0.1802 | 92.18 | 16500 | 0.8383 | 0.5644 |
0.1826 | 94.97 | 17000 | 0.8799 | 0.5657 |
0.1717 | 97.77 | 17500 | 0.8620 | 0.5709 |
0.1701 | 100.56 | 18000 | 0.8717 | 0.5662 |
0.1623 | 103.35 | 18500 | 0.8534 | 0.5594 |
0.158 | 106.15 | 19000 | 0.8595 | 0.5546 |
0.1508 | 108.94 | 19500 | 0.8574 | 0.5545 |
0.142 | 111.73 | 20000 | 0.8671 | 0.5537 |
0.1395 | 114.53 | 20500 | 0.8436 | 0.5525 |
0.1373 | 117.32 | 21000 | 0.8808 | 0.5482 |
0.1338 | 120.11 | 21500 | 0.9024 | 0.5418 |
0.1278 | 122.91 | 22000 | 0.9143 | 0.5409 |
0.1207 | 125.7 | 22500 | 0.8917 | 0.5358 |
0.1203 | 128.49 | 23000 | 0.9041 | 0.5341 |
0.1083 | 131.28 | 23500 | 0.8884 | 0.5341 |
0.1147 | 134.08 | 24000 | 0.8910 | 0.5255 |
0.1129 | 136.87 | 24500 | 0.8826 | 0.5241 |
0.1029 | 139.66 | 25000 | 0.8824 | 0.5246 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0