PEFT
Safetensors
unsloth
Generated from Trainer
vanshikasundrani's picture
Updated details
9d4ae9b verified
---
library_name: peft
license: apache-2.0
base_model: unsloth/mistral-7b-bnb-4bit
tags:
- unsloth
- generated_from_trainer
model-index:
- name: english-hindi-colloquial-translator
results: []
datasets:
- vanshikasundrani/english-hindi-colloquial-dataset
- cfilt/iitb-english-hindi
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# english-hindi-colloquial-translator
This model is a fine-tuned version of [unsloth/mistral-7b-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-bnb-4bit) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 8.7228
## Model description
Model to translate the English to Hindi Language
## Intended uses & limitations
More information needed
## Training and evaluation data
Base pretrained dataset:
Training and Evaluation Data is present in: vanshikasundrani/english-hindi-colloquial-dataset
prompt = f"""### Human: You are a Hindi colloquial language translator. Translate the following English text to Hindi colloquial language (spoken Hindi).
Here are some examples:
"See you later?" -> ""बाद में मिलते हैं?"
"How are you?" -> "कैसे हो?"
"What's your plan?" -> "तुम्हारा क्या प्लान है?"
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.6198 | 5.9701 | 400 | 8.7228 |
### Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0