|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
datasets: |
|
- yahma/alpaca-cleaned |
|
license: apache-2.0 |
|
--- |
|
|
|
<p><h1> speechless-mistral-moloras-7b </h1></p> |
|
|
|
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-AWQ) |
|
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GPTQ) |
|
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-mistral-moloras-7B-GGUF) |
|
|
|
[4-bit GGUF models for CPU+GPU inference](https://huggingface.co/uukuguy/speechless-mistral-moloras-7b/tree/main/GGUF) |
|
|
|
This model is the static version of moloras (Mixture-of-multi-LoRAs) based on the following 6 Mistral-based LoRa modules. |
|
|
|
- Intel/neural-chat-7b-v3-1 |
|
- migtissera/SynthIA-7B-v1.3 |
|
- jondurbin/airoboros-m-7b-3.1.2 |
|
- bhenrym14/mistral-7b-platypus-fp16 |
|
- teknium/CollectiveCognition-v1.1-Mistral-7B |
|
- uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b |
|
|
|
Totally 6 LoRA modules from [speechless-mistral-7b-dare-0.85](https://huggingface.co/speechlessai/speechless-mistral-7b-dare-0.85) |
|
|
|
The router of mixture-of-multi-loras enables an automatic assembling of LoRA modules, using a gradientfree approach to obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen tasks. |
|
|
|
|
|
|
|
|
|
Code: https://github.com/uukuguy/multi_loras?tab=readme-ov-file#mixture-of-multi-loras |
|
|
|
## LM-Evaluation-Harness |
|
|
|
[Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
|
|
| Metric | Value | |
|
| --- | --- | |
|
| ARC | 59.98 | |
|
| HellaSwag | 83.29 | |
|
| MMLU | 64.12 | |
|
| TruthfulQA | 42.15 | |
|
| Winogrande | 78.37 | |
|
| GSM8K | 37.68 | |
|
| Average | 60.93 | |
|
|
|
|