distilbert_sharetask-batchsize_l8
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4673
- F1: 0.7942
- Precision: 0.8096
- Recall: 0.7862
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
---|---|---|---|---|---|---|
0.6929 | 1.0 | 689 | 0.6527 | 0.6133 | 0.6204 | 0.6272 |
0.6199 | 2.0 | 1378 | 0.6383 | 0.5633 | 0.6675 | 0.6347 |
0.4009 | 3.0 | 2067 | 0.5935 | 0.7647 | 0.7687 | 0.7617 |
0.1442 | 4.0 | 2756 | 0.9999 | 0.7588 | 0.7570 | 0.7609 |
0.2125 | 5.0 | 3445 | 1.2660 | 0.7776 | 0.7957 | 0.7692 |
0.054 | 6.0 | 4134 | 1.4680 | 0.7838 | 0.8183 | 0.7719 |
0.1439 | 7.0 | 4823 | 1.4673 | 0.7942 | 0.8096 | 0.7862 |
0.0018 | 8.0 | 5512 | 1.5382 | 0.7877 | 0.7923 | 0.7842 |
0.0144 | 9.0 | 6201 | 1.5751 | 0.7872 | 0.7880 | 0.7865 |
0.0259 | 10.0 | 6890 | 1.6065 | 0.7833 | 0.7839 | 0.7828 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support