distilbert_sharetask-batchsize_l16
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2120
- F1: 0.7639
- Precision: 0.7636
- Recall: 0.7642
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
---|---|---|---|---|---|---|
0.6828 | 1.0 | 173 | 0.6750 | 0.5399 | 0.5754 | 0.5743 |
0.6702 | 2.0 | 346 | 0.6565 | 0.5514 | 0.6259 | 0.6098 |
0.5865 | 3.0 | 519 | 0.5886 | 0.6927 | 0.7200 | 0.6863 |
0.4011 | 4.0 | 692 | 0.6880 | 0.6517 | 0.6823 | 0.6850 |
0.1909 | 5.0 | 865 | 0.6958 | 0.7513 | 0.7617 | 0.7457 |
0.2072 | 6.0 | 1038 | 0.7636 | 0.7555 | 0.7533 | 0.7585 |
0.0514 | 7.0 | 1211 | 0.8919 | 0.7594 | 0.7596 | 0.7592 |
0.0842 | 8.0 | 1384 | 1.1276 | 0.7561 | 0.7555 | 0.7568 |
0.0163 | 9.0 | 1557 | 1.1865 | 0.7582 | 0.7582 | 0.7582 |
0.0266 | 10.0 | 1730 | 1.2120 | 0.7639 | 0.7636 | 0.7642 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support