distilbert_sharetask-batchsize_32
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0654
- F1: 0.7707
- Precision: 0.7762
- Recall: 0.7668
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
---|---|---|---|---|---|---|
0.6832 | 1.0 | 173 | 0.6780 | 0.5575 | 0.5691 | 0.5727 |
0.6742 | 2.0 | 346 | 0.6615 | 0.5923 | 0.5944 | 0.5995 |
0.6243 | 3.0 | 519 | 0.6405 | 0.6086 | 0.7017 | 0.6169 |
0.467 | 4.0 | 692 | 0.6448 | 0.6651 | 0.6859 | 0.6926 |
0.2642 | 5.0 | 865 | 0.6239 | 0.7633 | 0.7622 | 0.7644 |
0.2452 | 6.0 | 1038 | 0.6582 | 0.7488 | 0.7462 | 0.7535 |
0.0909 | 7.0 | 1211 | 0.8187 | 0.7585 | 0.7597 | 0.7574 |
0.07 | 8.0 | 1384 | 0.9174 | 0.7671 | 0.7662 | 0.7681 |
0.0493 | 9.0 | 1557 | 1.0654 | 0.7707 | 0.7762 | 0.7668 |
0.0507 | 10.0 | 1730 | 1.0650 | 0.7686 | 0.7675 | 0.7698 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support