distilbert_sharetask-batchsize_16
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2779
- F1: 0.7771
- Precision: 0.7788
- Recall: 0.7755
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
---|---|---|---|---|---|---|
0.6882 | 1.0 | 345 | 0.6740 | 0.5409 | 0.5816 | 0.5791 |
0.6423 | 2.0 | 690 | 0.6301 | 0.6072 | 0.6515 | 0.6477 |
0.4739 | 3.0 | 1035 | 0.6197 | 0.6760 | 0.6790 | 0.6741 |
0.3332 | 4.0 | 1380 | 0.7662 | 0.6784 | 0.7096 | 0.7129 |
0.3029 | 5.0 | 1725 | 0.8575 | 0.7648 | 0.7764 | 0.7585 |
0.2731 | 6.0 | 2070 | 0.9569 | 0.7715 | 0.7838 | 0.7649 |
0.0723 | 7.0 | 2415 | 1.1297 | 0.7699 | 0.7722 | 0.7679 |
0.0978 | 8.0 | 2760 | 1.2779 | 0.7771 | 0.7788 | 0.7755 |
0.0447 | 9.0 | 3105 | 1.3216 | 0.7665 | 0.7649 | 0.7684 |
0.1844 | 10.0 | 3450 | 1.3376 | 0.7726 | 0.7750 | 0.7706 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support