dfine-xlarge-coco / README.md
vladislavbro's picture
Update README.md
4ac2c8f verified
|
raw
history blame
1.36 kB
metadata
library_name: transformers

This is the HF transformers implementation for D-FINE

Model: D-FINE-X-COCO

D-FINE, a powerful real-time object detector that achieves outstanding localization precision by redefining the bounding box regression task in DETR models. D-FINE comprises two key components: Fine-grained Distribution Refinement (FDR) and Global Optimal Localization Self-Distillation (GO-LSD).

Usage:

import torch
import requests

from PIL import Image
from transformers import DFineForObjectDetection, AutoImageProcessor

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

image_processor = AutoImageProcessor.from_pretrained("vladislavbro/dfine_x_coco")
model = DFineForObjectDetection.from_pretrained("vladislavbro/dfine_x_coco")

inputs = image_processor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)

results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)

for result in results:
    for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
        score, label = score.item(), label_id.item()
        box = [round(i, 2) for i in box.tolist()]
        print(f"{model.config.id2label[label]}: {score:.2f} {box}")