qwen-assamese-ner-lora
This model is a fine-tuned version of Qwen/Qwen3-0.6B on the assamese_ner_train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0928
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 15.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.1607 | 1.0 | 1343 | 0.3104 |
0.1208 | 2.0 | 2686 | 0.1830 |
0.1098 | 3.0 | 4029 | 0.1470 |
0.1062 | 4.0 | 5372 | 0.1498 |
0.0557 | 5.0 | 6715 | 0.1195 |
0.0722 | 6.0 | 8058 | 0.1009 |
0.0418 | 7.0 | 9401 | 0.1032 |
0.0352 | 8.0 | 10744 | 0.0861 |
0.0255 | 9.0 | 12087 | 0.0861 |
0.015 | 10.0 | 13430 | 0.0812 |
0.0118 | 11.0 | 14773 | 0.0737 |
0.0123 | 12.0 | 16116 | 0.0865 |
0.0015 | 13.0 | 17459 | 0.0895 |
0.0012 | 14.0 | 18802 | 0.0876 |
0.0006 | 14.9894 | 20130 | 0.0928 |
Framework versions
- PEFT 0.14.0
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 196
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support