Medical-NER
This model is a fine-tuned version of Clinical-AI-Apollo/Medical-NER on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1694
- Precision: 0.9149
- Recall: 0.8666
- F1: 0.8901
- Accuracy: 0.9427
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0013 | 1.0 | 4159 | 0.1694 | 0.9149 | 0.8666 | 0.8901 | 0.9427 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.