modernbert-3pair-adv-3label-v2

This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3307
  • Accuracy: 0.9216
  • F1: 0.9214
  • Precision: 0.9215
  • Recall: 0.9216
  • F1 Class 0: 0.9227
  • Precision Class 0: 0.9204
  • Recall Class 0: 0.9250
  • F1 Class 1: 0.9399
  • Precision Class 1: 0.9285
  • Recall Class 1: 0.9516
  • F1 Class 2: 0.9019
  • Precision Class 2: 0.9156
  • Recall Class 2: 0.8886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • total_train_batch_size: 192
  • total_eval_batch_size: 192
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • label_smoothing_factor: 0.05

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall F1 Class 0 Precision Class 0 Recall Class 0 F1 Class 1 Precision Class 1 Recall Class 1 F1 Class 2 Precision Class 2 Recall Class 2
1.9049 1.0 13603 0.3307 0.9216 0.9214 0.9215 0.9216 0.9227 0.9204 0.9250 0.9399 0.9285 0.9516 0.9019 0.9156 0.8886

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
5
Safetensors
Model size
396M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for upvantage/modernbert-3pair-adv-3label-v2

Finetuned
(180)
this model