modernbert-3label-cleaned-normalized-fixed
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3506
- Accuracy: 0.9133
- F1: 0.9131
- Precision: 0.9131
- Recall: 0.9133
- F1 Class 0: 0.9125
- Precision Class 0: 0.9109
- Recall Class 0: 0.9140
- F1 Class 1: 0.9413
- Precision Class 1: 0.9335
- Recall Class 1: 0.9493
- F1 Class 2: 0.8853
- Precision Class 2: 0.8949
- Recall Class 2: 0.8759
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 256
- total_eval_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- label_smoothing_factor: 0.05
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Class 0 | Precision Class 0 | Recall Class 0 | F1 Class 1 | Precision Class 1 | Recall Class 1 | F1 Class 2 | Precision Class 2 | Recall Class 2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.8714 | 1.0 | 7197 | 0.3506 | 0.9133 | 0.9131 | 0.9131 | 0.9133 | 0.9125 | 0.9109 | 0.9140 | 0.9413 | 0.9335 | 0.9493 | 0.8853 | 0.8949 | 0.8759 |
Framework versions
- Transformers 4.55.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 15
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for upvantage/modernbert-3label-cleaned-normalized-fixed
Base model
answerdotai/ModernBERT-large