modernbert-20m-sentences-combined-fixed
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2021
- Accuracy: 0.9189
- F1: 0.9188
- Precision: 0.9191
- Recall: 0.9189
- F1 Class 0: 0.9213
- Precision Class 0: 0.9105
- Recall Class 0: 0.9323
- F1 Class 1: 0.9163
- Precision Class 1: 0.9280
- Recall Class 1: 0.9050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1000
- eval_batch_size: 1000
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 8000
- total_eval_batch_size: 8000
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | F1 Class 0 | Precision Class 0 | Recall Class 0 | F1 Class 1 | Precision Class 1 | Recall Class 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.707 | 1.0 | 2739 | 0.2117 | 0.9149 | 0.9149 | 0.9149 | 0.9149 | 0.9162 | 0.9180 | 0.9145 | 0.9134 | 0.9117 | 0.9152 |
1.5938 | 2.0 | 5478 | 0.2021 | 0.9189 | 0.9188 | 0.9191 | 0.9189 | 0.9213 | 0.9105 | 0.9323 | 0.9163 | 0.9280 | 0.9050 |
Framework versions
- Transformers 4.54.1
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 46
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for upvantage/modernbert-20m-sentences-combined-fixed
Base model
answerdotai/ModernBERT-large