Unsloth Dynamic 2.0 achieves superior accuracy & outperforms other leading quants.

SmolLM3

image/png

Table of Contents

  1. Model Summary
  2. How to use
  3. Evaluation
  4. Training
  5. Limitations
  6. License

Model Summary

SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale.

image/png

The model is a decoder-only transformer using GQA and NoPE (with 3:1 ratio), it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).

Key features

  • Instruct model optimized for hybrid reasoning
  • Fully open model: open weights + full training details including public data mixture and training configs
  • Long context: Trained on 64k context and suppots up to 128k tokens using YARN extrapolation
  • Multilingual: 6 natively supported (English, French, Spanish, German, Italian, and Portuguese)

For more details refer to our blog post: https://hf.co/blog/smollm3

How to use

The modeling code for SmolLM3 is available in transformers v4.53.0, so make sure to upgrade your transformers version. You can also load the model with the latest vllm which uses transformers as a backend.

pip install -U transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "HuggingFaceTB/SmolLM3-3B"
device = "cuda"  # for GPU usage or "cpu" for CPU usage

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
).to(device)

# prepare the model input
prompt = "Give me a brief explanation of gravity in simple terms."
messages_think = [
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages_think,
    tokenize=False,
    add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)

# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
print(tokenizer.decode(output_ids, skip_special_tokens=True))

We recommend setting temperature=0.6 and top_p=0.95 in the sampling parameters.

Enabling and Disabling Extended Thinking Mode

We enable extended thinking by default, so the example above generates the output with a reasoning trace. For choosing between enabling, you can provide the /think and /no_think flags through the system prompt as shown in the snippet below for extended thinking disabled. The code for generating the response with extended thinking would be the same except that the system prompt should have /think instead of /no_think.

prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
    {"role": "system", "content": "/no_think"},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)

We also provide the option of specifying the whether to use extended thinking through the enable_thinking kwarg as in the example below. You do not need to set the /no_think or /think flags through the system prompt if using the kwarg, but keep in mind that the flag in the system prompt overwrites the setting in the kwarg.

prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=False
)

Agentic Usage

SmolLM3 supports tool calling! Just pass your list of tools:

  • Under the argument xml_tools for standard tool-calling: these tools will be called as JSON blobs within XML tags, like <tool_call>{"name": "get_weather", "arguments": {"city": "Copenhagen"}}</tool_call>
  • Or under python_tools: then the model will call tools like python functions in a <code> snippet, like <code>get_weather(city="Copenhagen")</code>
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "HuggingFaceTB/SmolLM3-3B"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)

tools = [
    {
        "name": "get_weather",
        "description": "Get the weather in a city",
        "parameters": {"type": "object", "properties": {"city": {"type": "string", "description": "The city to get the weather for"}}}}
]

messages = [
    {
        "role": "user",
        "content": "Hello! How is the weather today in Copenhagen?"
    }
]

inputs = tokenizer.apply_chat_template(
    messages,
    enable_thinking=False, # True works as well, your choice!
    xml_tools=tools,
    add_generation_prompt=True,
    tokenize=True,
    return_tensors="pt"
)

outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Using Custom System Instructions.

You can specify custom instruction through the system prompt while controlling whether to use extended thinking. For example, the snippet below shows how to make the model speak like a pirate while enabling extended thinking.

prompt = "Give me a brief explanation of gravity in simple terms."
messages = [
    {"role": "system", "content": "Speak like a pirate./think"},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)

For local inference, you can use llama.cpp, ONNX, MLX and MLC. You can find quantized checkpoints in this collection (https://huggingface.co/collections/HuggingFaceTB/smollm3-686d33c1fdffe8e635317e23)

vLLM and SGLang

You can use vLLM and SGLang to deploy the model in an API compatible with OpenAI format.

SGLang

python -m sglang.launch_server --model-path HuggingFaceTB/SmolLM3-3B

vLLM

vllm serve HuggingFaceTB/SmolLM3-3B

Setting chat_template_kwargs

You can specify chat_template_kwargs such as enable_thinking and xml_tools to a deployed model by passing the chat_template_kwargs parameter in the API request.

curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
  "model": "HuggingFaceTB/SmolLM3-3B",
  "messages": [
    {"role": "user", "content": "Give me a brief explanation of gravity in simple terms."}
  ],
  "temperature": 0.6,
  "top_p": 0.95,
  "max_tokens": 16384,
  "chat_template_kwargs": {"enable_thinking": false}
}'

Evaluation

In this section, we report the evaluation results of SmolLM3 model. All evaluations are zero-shot unless stated otherwise, and we use lighteval to run them.

We highlight the best score in bold and underline the second-best score.

Instruction Model

No Extended Thinking

Evaluation results of non reasoning models and reasoning models in no thinking mode. We highlight the best and second-best scores in bold.

Category Metric SmoLLM3-3B Qwen2.5-3B Llama3.1-3B Qwen3-1.7B Qwen3-4B
High school math competition AIME 2025 9.3 2.9 0.3 8.0 17.1
Math problem-solving GSM-Plus 72.8 74.1 59.2 68.3 82.1
Competitive programming LiveCodeBench v4 15.2 10.5 3.4 15.0 24.9
Graduate-level reasoning GPQA Diamond 35.7 32.2 29.4 31.8 44.4
Instruction following IFEval 76.7 65.6 71.6 74.0 68.9
Alignment MixEval Hard 26.9 27.6 24.9 24.3 31.6
Tool Calling BFCL 92.3 - 92.3 * 89.5 95.0
Multilingual Q&A Global MMLU 53.5 50.54 46.8 49.5 65.1

(*): this is a tool calling finetune

Extended Thinking

Evaluation results in reasoning mode for SmolLM3 and Qwen3 models:

Category Metric SmoLLM3-3B Qwen3-1.7B Qwen3-4B
High school math competition AIME 2025 36.7 30.7 58.8
Math problem-solving GSM-Plus 83.4 79.4 88.2
Competitive programming LiveCodeBench v4 30.0 34.4 52.9
Graduate-level reasoning GPQA Diamond 41.7 39.9 55.3
Instruction following IFEval 71.2 74.2 85.4
Alignment MixEval Hard 30.8 33.9 38.0
Tool Calling BFCL 88.8 88.8 95.5
Multilingual Q&A Global MMLU 64.1 62.3 73.3

Base Pre-Trained Model

English benchmarks

Note: All evaluations are zero-shot unless stated otherwise. For Ruler 64k evaluation, we apply YaRN to the Qwen models with 32k context to extrapolate the context length.

Category Metric SmolLM3-3B Qwen2.5-3B Llama3-3.2B Qwen3-1.7B-Base Qwen3-4B-Base
Reasoning & Commonsense HellaSwag 76.15 74.19 75.52 60.52 74.37
ARC-CF (Average) 65.61 59.81 58.58 55.88 62.11
Winogrande 58.88 61.41 58.72 57.06 59.59
CommonsenseQA 55.28 49.14 60.60 48.98 52.99
Knowledge & Understanding MMLU-CF (Average) 44.13 42.93 41.32 39.11 47.65
MMLU Pro CF 19.61 16.66 16.42 18.04 24.92
MMLU Pro MCF 32.70 31.32 25.07 30.39 41.07
PIQA 78.89 78.35 78.51 75.35 77.58
OpenBookQA 40.60 40.20 42.00 36.40 42.40
BoolQ 78.99 73.61 75.33 74.46 74.28
Math & Code
Coding & math HumanEval+ 30.48 34.14 25.00 43.29 54.87
MBPP+ 52.91 52.11 38.88 59.25 63.75
MATH (4-shot) 46.10 40.10 7.44 41.64 51.20
GSM8k (5-shot) 67.63 70.13 25.92 65.88 74.14
Long context
Ruler 32k 76.35 75.93 77.58 70.63 83.98
Ruler 64k 67.85 64.90 72.93 57.18 60.29
Ruler 128k 61.03 62.23 71.30 43.03 47.23

Multilingual benchmarks

Category Metric SmolLM3 3B Base Qwen2.5-3B Llama3.2 3B Qwen3 1.7B Base Qwen3 4B Base
Main supported languages
French MLMM Hellaswag 63.94 57.47 57.66 51.26 61.00
Belebele 51.00 51.55 49.22 49.44 55.00
Global MMLU (CF) 38.37 34.22 33.71 34.94 41.80
Flores-200 (5-shot) 62.85 61.38 62.89<u/u> 58.68 65.76
Spanish MLMM Hellaswag 65.85 58.25 59.39 52.40 61.85
Belebele 47.00 48.88 47.00 47.56 50.33
Global MMLU (CF) 38.51 35.84 35.60 34.79 41.22
Flores-200 (5-shot) 48.25 50.00 44.45 46.93 50.16
German MLMM Hellaswag 59.56 49.99 53.19 46.10 56.43
Belebele 48.44 47.88 46.22 48.00 53.44
Global MMLU (CF) 35.10 33.19 32.60 32.73 38.70
Flores-200 (5-shot) 56.60 50.63 54.95 52.58 50.48
Italian MLMM Hellaswag 62.49 53.21 54.96 48.72 58.76
Belebele 46.44 44.77 43.88 44.00 48.78
Global MMLU (CF) 36.99 33.91 32.79 35.37 39.26
Flores-200 (5-shot) 52.65 54.87 48.83 48.37 49.11
Portuguese MLMM Hellaswag 63.22 57.38 56.84 50.73 59.89
Belebele 47.67 49.22 45.00 44.00 50.00
Global MMLU (CF) 36.88 34.72 33.05 35.26 40.66
Flores-200 (5-shot) 60.93 57.68 54.28 56.58 63.43

The model has also been trained on Arabic (standard), Chinese and Russian data, but has seen fewer tokens in these languages compared to the 6 above. We report the performance on these langages for information.

Category Metric SmolLM3 3B Base Qwen2.5-3B Llama3.2 3B Qwen3 1.7B Base Qwen3 4B Base
Other supported languages
Arabic Belebele 40.22 44.22 45.33 42.33 51.78
Global MMLU (CF) 28.57 28.81 27.67 29.37 31.85
Flores-200 (5-shot) 40.22 39.44 44.43 35.82 39.76
Chinese Belebele 43.78 44.56 49.56 48.78 53.22
Global MMLU (CF) 36.16 33.79 39.57 38.56 44.55
Flores-200 (5-shot) 29.17 33.21 31.89 25.70 32.50
Russian Belebele 47.44 45.89 47.44 45.22 51.44
Global MMLU (CF) 36.51 32.47 34.52 34.83 38.80
Flores-200 (5-shot) 47.13 48.74 50.74 54.70 60.53

Training

Model

  • Architecture: Transformer decoder
  • Pretraining tokens: 11T
  • Precision: bfloat16

Software & hardware

Open resources

Here is an infographic with all the training details

  • The datasets used for pretraining can be found in this collection and those used in mid-training and post-training will be uploaded later
  • The training and evaluation configs and code can be found in the huggingface/smollm repository.

image/png

Limitations

SmolLM3 can produce text on a variety of topics, but the generated content may not always be factually accurate, logically consistent, or free from biases present in the training data. These models should be used as assistive tools rather than definitive sources of information. Users should always verify important information and critically evaluate any generated content.

License

Apache 2.0

Downloads last month
0
Safetensors
Model size
1.71B params
Tensor type
F32
·
BF16
·
U8
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for unsloth/SmolLM3-3B-bnb-4bit

Quantized
(17)
this model