shimmyshimmer commited on
Commit
15929a2
·
verified ·
1 Parent(s): 71bcbcc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -14
README.md CHANGED
@@ -40,8 +40,6 @@ pipeline_tag: text-generation
40
  - Fine-tune Qwen3 (14B) for free using our Google [Colab notebook](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
41
  - Read our Blog about Qwen3 support: [unsloth.ai/blog/qwen3](https://unsloth.ai/blog/qwen3)
42
  - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
43
- - Run & export your fine-tuned model to Ollama, llama.cpp or HF.
44
-
45
  | Unsloth supports | Free Notebooks | Performance | Memory use |
46
  |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
47
  | **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 70% less |
@@ -50,30 +48,30 @@ pipeline_tag: text-generation
50
  | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
51
  | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
52
 
53
- # Qwen3-Coder-480B-A35B-Instruct
54
  <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
55
  <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
56
  </a>
57
 
58
  ## Highlights
59
 
60
- Today, we're announcing **Qwen3-Coder**, our most agentic code model to date. **Qwen3-Coder** is available in multiple sizes, but we're excited to introduce its most powerful variant first: **Qwen3-Coder-480B-A35B-Instruct**. featuring the following key enhancements:
61
 
62
- - **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks, achieving results comparable to Claude Sonnet.
63
  - **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding.
64
- - **Agentic Coding** supporting for most platfrom such as **Qwen Code**, **CLINE**, featuring a specially designed function call format.
65
 
66
- ![image/jpeg](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Coder/qwen3-coder-main.jpg)
67
 
68
  ## Model Overview
69
 
70
- **Qwen3-480B-A35B-Instruct** has the following features:
71
  - Type: Causal Language Models
72
  - Training Stage: Pretraining & Post-training
73
- - Number of Parameters: 480B in total and 35B activated
74
- - Number of Layers: 62
75
- - Number of Attention Heads (GQA): 96 for Q and 8 for KV
76
- - Number of Experts: 160
77
  - Number of Activated Experts: 8
78
  - Context Length: **262,144 natively**.
79
 
@@ -95,7 +93,7 @@ The following contains a code snippet illustrating how to use the model generate
95
  ```python
96
  from transformers import AutoModelForCausalLM, AutoTokenizer
97
 
98
- model_name = "Qwen/Qwen3-480B-A35B-Instruct"
99
 
100
  # load the tokenizer and the model
101
  tokenizer = AutoTokenizer.from_pretrained(model_name)
@@ -176,7 +174,7 @@ messages = [{'role': 'user', 'content': 'square the number 1024'}]
176
 
177
  completion = client.chat.completions.create(
178
  messages=messages,
179
- model="Qwen3-480B-A35B-Instruct",
180
  max_tokens=65536,
181
  tools=tools,
182
  )
 
40
  - Fine-tune Qwen3 (14B) for free using our Google [Colab notebook](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
41
  - Read our Blog about Qwen3 support: [unsloth.ai/blog/qwen3](https://unsloth.ai/blog/qwen3)
42
  - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
 
 
43
  | Unsloth supports | Free Notebooks | Performance | Memory use |
44
  |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
45
  | **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 70% less |
 
48
  | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
49
  | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
50
 
51
+ # Qwen3-Coder-3B-A3B-Instruct
52
  <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
53
  <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
54
  </a>
55
 
56
  ## Highlights
57
 
58
+ **Qwen3-Coder** is available in multiple sizes. Today, we're excited to introduce **Qwen3-Coder-30B-A3B-Instruct**. This streamlined model maintains impressive performance and efficiency, featuring the following key enhancements:
59
 
60
+ - **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks.
61
  - **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding.
62
+ - **Agentic Coding** supporting for most platform such as **Qwen Code**, **CLINE**, featuring a specially designed function call format.
63
 
64
+ ![image/jpeg](placeholder of Qwen3-Coder-30B-A3B-Instruct performance image )
65
 
66
  ## Model Overview
67
 
68
+ **Qwen3-Coder-30B-A3B-Instruct** has the following features:
69
  - Type: Causal Language Models
70
  - Training Stage: Pretraining & Post-training
71
+ - Number of Parameters: 30.5B in total and 3.3B activated
72
+ - Number of Layers: 48
73
+ - Number of Attention Heads (GQA): 32 for Q and 4 for KV
74
+ - Number of Experts: 128
75
  - Number of Activated Experts: 8
76
  - Context Length: **262,144 natively**.
77
 
 
93
  ```python
94
  from transformers import AutoModelForCausalLM, AutoTokenizer
95
 
96
+ model_name = "Qwen/Qwen3-Coder-30B-A3B-Instruct"
97
 
98
  # load the tokenizer and the model
99
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
174
 
175
  completion = client.chat.completions.create(
176
  messages=messages,
177
+ model="Qwen3-Coder-30B-A3B-Instruct",
178
  max_tokens=65536,
179
  tools=tools,
180
  )