shimmyshimmer commited on
Commit
71bcbcc
·
verified ·
1 Parent(s): 29f5c71

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -17
README.md CHANGED
@@ -1,6 +1,8 @@
1
  ---
2
  tags:
3
  - unsloth
 
 
4
  base_model:
5
  - Qwen/Qwen3-Coder-30B-A3B-Instruct
6
  library_name: transformers
@@ -9,12 +11,17 @@ license_link: https://huggingface.co/Qwen/Qwen3-Coder-30B-A3B-Instruct/blob/main
9
  pipeline_tag: text-generation
10
  ---
11
  > [!NOTE]
12
- > Includes Unsloth **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
13
  >
14
-
15
  <div>
 
 
 
 
 
 
16
  <p style="margin-top: 0;margin-bottom: 0;">
17
- <em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
18
  </p>
19
  <div style="display: flex; gap: 5px; align-items: center; ">
20
  <a href="https://github.com/unslothai/unsloth/">
@@ -23,37 +30,50 @@ pipeline_tag: text-generation
23
  <a href="https://discord.gg/unsloth">
24
  <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
25
  </a>
26
- <a href="https://docs.unsloth.ai/">
27
  <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
28
  </a>
29
  </div>
 
30
  </div>
31
 
 
 
 
 
32
 
33
- # Qwen3-Coder-3B-A3B-Instruct
 
 
 
 
 
 
 
 
34
  <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
35
  <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
36
  </a>
37
 
38
  ## Highlights
39
 
40
- **Qwen3-Coder** is available in multiple sizes. Today, we're excited to introduce **Qwen3-Coder-30B-A3B-Instruct**. This streamlined model maintains impressive performance and efficiency, featuring the following key enhancements:
41
 
42
- - **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks.
43
  - **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding.
44
- - **Agentic Coding** supporting for most platform such as **Qwen Code**, **CLINE**, featuring a specially designed function call format.
45
 
46
- ![image/jpeg](placeholder of Qwen3-Coder-30B-A3B-Instruct performance image )
47
 
48
  ## Model Overview
49
 
50
- **Qwen3-Coder-30B-A3B-Instruct** has the following features:
51
  - Type: Causal Language Models
52
  - Training Stage: Pretraining & Post-training
53
- - Number of Parameters: 30.5B in total and 3.3B activated
54
- - Number of Layers: 48
55
- - Number of Attention Heads (GQA): 32 for Q and 4 for KV
56
- - Number of Experts: 128
57
  - Number of Activated Experts: 8
58
  - Context Length: **262,144 natively**.
59
 
@@ -75,7 +95,7 @@ The following contains a code snippet illustrating how to use the model generate
75
  ```python
76
  from transformers import AutoModelForCausalLM, AutoTokenizer
77
 
78
- model_name = "Qwen/Qwen3-Coder-30B-A3B-Instruct"
79
 
80
  # load the tokenizer and the model
81
  tokenizer = AutoTokenizer.from_pretrained(model_name)
@@ -156,7 +176,7 @@ messages = [{'role': 'user', 'content': 'square the number 1024'}]
156
 
157
  completion = client.chat.completions.create(
158
  messages=messages,
159
- model="Qwen3-Coder-30B-A3B-Instruct",
160
  max_tokens=65536,
161
  tools=tools,
162
  )
@@ -188,4 +208,4 @@ If you find our work helpful, feel free to give us a cite.
188
  primaryClass={cs.CL},
189
  url={https://arxiv.org/abs/2505.09388},
190
  }
191
- ```
 
1
  ---
2
  tags:
3
  - unsloth
4
+ - qwen3
5
+ - qwen
6
  base_model:
7
  - Qwen/Qwen3-Coder-30B-A3B-Instruct
8
  library_name: transformers
 
11
  pipeline_tag: text-generation
12
  ---
13
  > [!NOTE]
14
+ > Extends context length from 256K to 1 million
15
  >
 
16
  <div>
17
+ <p style="margin-bottom: 0; margin-top: 0;">
18
+ <strong>See <a href="https://huggingface.co/collections/unsloth/qwen3-680edabfb790c8c34a242f95">our collection</a> for all versions of Qwen3 including GGUF, 4-bit & 16-bit formats.</strong>
19
+ </p>
20
+ <p style="margin-bottom: 0;">
21
+ <em>Learn to run Qwen3-Coder correctly - <a href="https://docs.unsloth.ai/basics/qwen3-coder">Read our Guide</a>.</em>
22
+ </p>
23
  <p style="margin-top: 0;margin-bottom: 0;">
24
+ <em>See <a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0 GGUFs</a> for our quantization benchmarks.</em>
25
  </p>
26
  <div style="display: flex; gap: 5px; align-items: center; ">
27
  <a href="https://github.com/unslothai/unsloth/">
 
30
  <a href="https://discord.gg/unsloth">
31
  <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
32
  </a>
33
+ <a href="https://docs.unsloth.ai/basics/qwen3-coder">
34
  <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
35
  </a>
36
  </div>
37
+ <h1 style="margin-top: 0rem;">✨ Read our Qwen3-Coder Guide <a href="https://docs.unsloth.ai/basics/qwen3-coder">here</a>!</h1>
38
  </div>
39
 
40
+ - Fine-tune Qwen3 (14B) for free using our Google [Colab notebook](https://docs.unsloth.ai/get-started/unsloth-notebooks)!
41
+ - Read our Blog about Qwen3 support: [unsloth.ai/blog/qwen3](https://unsloth.ai/blog/qwen3)
42
+ - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
43
+ - Run & export your fine-tuned model to Ollama, llama.cpp or HF.
44
 
45
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
46
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
47
+ | **Qwen3 (14B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 70% less |
48
+ | **GRPO with Qwen3 (8B)** | [▶️ Start on Colab](https://docs.unsloth.ai/get-started/unsloth-notebooks) | 3x faster | 80% less |
49
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
50
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
51
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
52
+
53
+ # Qwen3-Coder-480B-A35B-Instruct
54
  <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;">
55
  <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/>
56
  </a>
57
 
58
  ## Highlights
59
 
60
+ Today, we're announcing **Qwen3-Coder**, our most agentic code model to date. **Qwen3-Coder** is available in multiple sizes, but we're excited to introduce its most powerful variant first: **Qwen3-Coder-480B-A35B-Instruct**. featuring the following key enhancements:
61
 
62
+ - **Significant Performance** among open models on **Agentic Coding**, **Agentic Browser-Use**, and other foundational coding tasks, achieving results comparable to Claude Sonnet.
63
  - **Long-context Capabilities** with native support for **256K** tokens, extendable up to **1M** tokens using Yarn, optimized for repository-scale understanding.
64
+ - **Agentic Coding** supporting for most platfrom such as **Qwen Code**, **CLINE**, featuring a specially designed function call format.
65
 
66
+ ![image/jpeg](https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen3-Coder/qwen3-coder-main.jpg)
67
 
68
  ## Model Overview
69
 
70
+ **Qwen3-480B-A35B-Instruct** has the following features:
71
  - Type: Causal Language Models
72
  - Training Stage: Pretraining & Post-training
73
+ - Number of Parameters: 480B in total and 35B activated
74
+ - Number of Layers: 62
75
+ - Number of Attention Heads (GQA): 96 for Q and 8 for KV
76
+ - Number of Experts: 160
77
  - Number of Activated Experts: 8
78
  - Context Length: **262,144 natively**.
79
 
 
95
  ```python
96
  from transformers import AutoModelForCausalLM, AutoTokenizer
97
 
98
+ model_name = "Qwen/Qwen3-480B-A35B-Instruct"
99
 
100
  # load the tokenizer and the model
101
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
176
 
177
  completion = client.chat.completions.create(
178
  messages=messages,
179
+ model="Qwen3-480B-A35B-Instruct",
180
  max_tokens=65536,
181
  tools=tools,
182
  )
 
208
  primaryClass={cs.CL},
209
  url={https://arxiv.org/abs/2505.09388},
210
  }
211
+ ```