Social Media Content Analyzer
This model is fine-tuned from DeepSeek-R1-Distill-Llama-8B to analyze social media content and generate:
- Detailed content critiques analyzing:
- Hook effectiveness
- Reliability factor
- Relatability
- Shareability
- Attention-grabbing titles optimized for TikTok, Instagram Reels, or YouTube Shorts
Usage Example
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "umarfarzan/social-media-content-analyzer"
model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
def generate_content_analysis(transcript, confidence_score):
prompt = f"""Below is a transcript from a social media video along with its confidence score.
Your task is to analyze the content and provide a detailed content critique analyzing the hook, reliability factor, relatability, and shareability.
### Transcript:
{transcript}
### Confidence Score:
{confidence_score}
### Content Critique:"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=1000,
temperature=0.7,
top_p=0.9
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response.split("### Content Critique:")[1].strip()
# Example usage
transcript = "Let me show you how to track your expenses with this simple spreadsheet template..."
score = 88
critique = generate_content_analysis(transcript, score)
print(critique)
Training
This model was fine-tuned using Unsloth on a dataset of social media content with expert annotations.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support