|
--- |
|
|
|
|
|
{} |
|
--- |
|
# Model Card for Model ID |
|
|
|
copy/paste/save as pix2pixinference.py |
|
``` |
|
import argparse |
|
import torch |
|
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, ToPILImage |
|
from torchvision.utils import save_image |
|
from PIL import Image |
|
import os |
|
import io |
|
from huggingface_hub import hf_hub_download |
|
import sys |
|
import matplotlib.pyplot as plt |
|
|
|
# Import the model architecture - assuming it's locally available |
|
# If not, we'll need to define it here |
|
try: |
|
from modeling_pix2pix import GeneratorUNet |
|
except ImportError: |
|
print("Couldn't import model architecture, defining it here...") |
|
# Define the UNet architecture as it appears in the original code |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
def weights_init_normal(m): |
|
classname = m.__class__.__name__ |
|
if classname.find("Conv") != -1: |
|
torch.nn.init.normal_(m.weight.data, 0.0, 0.02) |
|
elif classname.find("BatchNorm2d") != -1: |
|
torch.nn.init.normal_(m.weight.data, 1.0, 0.02) |
|
torch.nn.init.constant_(m.bias.data, 0.0) |
|
|
|
class UNetDown(nn.Module): |
|
def __init__(self, in_size, out_size, normalize=True, dropout=0.0): |
|
super(UNetDown, self).__init__() |
|
layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)] |
|
if normalize: |
|
layers.append(nn.InstanceNorm2d(out_size)) |
|
layers.append(nn.LeakyReLU(0.2)) |
|
if dropout: |
|
layers.append(nn.Dropout(dropout)) |
|
self.model = nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
class UNetUp(nn.Module): |
|
def __init__(self, in_size, out_size, dropout=0.0): |
|
super(UNetUp, self).__init__() |
|
layers = [ |
|
nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False), |
|
nn.InstanceNorm2d(out_size), |
|
nn.ReLU(inplace=True), |
|
] |
|
if dropout: |
|
layers.append(nn.Dropout(dropout)) |
|
self.model = nn.Sequential(*layers) |
|
|
|
def forward(self, x, skip_input): |
|
x = self.model(x) |
|
x = torch.cat((x, skip_input), 1) |
|
return x |
|
|
|
class GeneratorUNet(nn.Module): |
|
def __init__(self, in_channels=3, out_channels=3): |
|
super(GeneratorUNet, self).__init__() |
|
|
|
self.down1 = UNetDown(in_channels, 64, normalize=False) |
|
self.down2 = UNetDown(64, 128) |
|
self.down3 = UNetDown(128, 256) |
|
self.down4 = UNetDown(256, 512, dropout=0.5) |
|
self.down5 = UNetDown(512, 512, dropout=0.5) |
|
self.down6 = UNetDown(512, 512, dropout=0.5) |
|
self.down7 = UNetDown(512, 512, dropout=0.5) |
|
self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5) |
|
|
|
self.up1 = UNetUp(512, 512, dropout=0.5) |
|
self.up2 = UNetUp(1024, 512, dropout=0.5) |
|
self.up3 = UNetUp(1024, 512, dropout=0.5) |
|
self.up4 = UNetUp(1024, 512, dropout=0.5) |
|
self.up5 = UNetUp(1024, 256) |
|
self.up6 = UNetUp(512, 128) |
|
self.up7 = UNetUp(256, 64) |
|
|
|
self.final = nn.Sequential( |
|
nn.ConvTranspose2d(128, out_channels, 4, 2, 1), |
|
nn.Tanh(), |
|
) |
|
|
|
def forward(self, x): |
|
# U-Net generator with skip connections from encoder to decoder |
|
d1 = self.down1(x) |
|
d2 = self.down2(d1) |
|
d3 = self.down3(d2) |
|
d4 = self.down4(d3) |
|
d5 = self.down5(d4) |
|
d6 = self.down6(d5) |
|
d7 = self.down7(d6) |
|
d8 = self.down8(d7) |
|
u1 = self.up1(d8, d7) |
|
u2 = self.up2(u1, d6) |
|
u3 = self.up3(u2, d5) |
|
u4 = self.up4(u3, d4) |
|
u5 = self.up5(u4, d3) |
|
u6 = self.up6(u5, d2) |
|
u7 = self.up7(u6, d1) |
|
return self.final(u7) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Generate images using Pix2Pix model from HuggingFace Hub") |
|
parser.add_argument( |
|
"--repo_id", |
|
type=str, |
|
required=True, |
|
help="HuggingFace Hub repository ID (e.g., 'username/model_name')" |
|
) |
|
parser.add_argument( |
|
"--model_file", |
|
type=str, |
|
default="model.pt", |
|
help="Name of the model file in the repository" |
|
) |
|
parser.add_argument( |
|
"--input_image", |
|
type=str, |
|
required=True, |
|
help="Path to input image (night image to transform to day)" |
|
) |
|
parser.add_argument( |
|
"--output_image", |
|
type=str, |
|
default="output.png", |
|
help="Path to save the generated image" |
|
) |
|
parser.add_argument( |
|
"--image_size", |
|
type=int, |
|
default=256, |
|
help="Size of the input/output images" |
|
) |
|
parser.add_argument( |
|
"--display", |
|
action="store_true", |
|
help="Display input and output images using matplotlib" |
|
) |
|
parser.add_argument( |
|
"--token", |
|
type=str, |
|
default=None, |
|
help="HuggingFace token for accessing private repositories" |
|
) |
|
return parser.parse_args() |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
print(f"Using device: {device}") |
|
|
|
# Set up image transformations |
|
transform_input = Compose([ |
|
Resize((args.image_size, args.image_size)), |
|
ToTensor(), |
|
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
]) |
|
|
|
# Initialize model |
|
print("Initializing model...") |
|
generator = GeneratorUNet() |
|
generator.to(device) |
|
|
|
# Download model from Hugging Face Hub |
|
print(f"Downloading model from {args.repo_id}...") |
|
try: |
|
model_path = hf_hub_download( |
|
repo_id=args.repo_id, |
|
filename=args.model_file, |
|
token=args.token |
|
) |
|
print(f"Model downloaded to {model_path}") |
|
except Exception as e: |
|
print(f"Error downloading model: {e}") |
|
sys.exit(1) |
|
|
|
# Load model weights |
|
try: |
|
generator.load_state_dict(torch.load(model_path, map_location=device)) |
|
generator.eval() |
|
print("Model loaded successfully") |
|
except Exception as e: |
|
print(f"Error loading model weights: {e}") |
|
sys.exit(1) |
|
|
|
# Load and preprocess input image |
|
try: |
|
image = Image.open(args.input_image).convert("RGB") |
|
original_image = image.copy() |
|
input_tensor = transform_input(image).unsqueeze(0).to(device) |
|
print(f"Input image loaded: {args.input_image}") |
|
except Exception as e: |
|
print(f"Error loading input image: {e}") |
|
sys.exit(1) |
|
|
|
# Generate output image |
|
print("Generating image...") |
|
with torch.no_grad(): |
|
fake_B = generator(input_tensor) |
|
|
|
# Save the output image |
|
try: |
|
# Denormalize and convert back to image |
|
output_image = fake_B.cpu() |
|
save_image(output_image, args.output_image, normalize=True) |
|
print(f"Output image saved to {args.output_image}") |
|
|
|
# Create a PIL image for display if needed |
|
to_pil = ToPILImage() |
|
output_pil = to_pil(output_image.squeeze(0) * 0.5 + 0.5) |
|
except Exception as e: |
|
print(f"Error saving output image: {e}") |
|
sys.exit(1) |
|
|
|
# Display images if requested |
|
if args.display: |
|
try: |
|
plt.figure(figsize=(10, 5)) |
|
|
|
plt.subplot(1, 2, 1) |
|
plt.title("Input Image (Night)") |
|
plt.imshow(original_image) |
|
plt.axis("off") |
|
|
|
plt.subplot(1, 2, 2) |
|
plt.title("Generated Image (Day)") |
|
plt.imshow(output_pil) |
|
plt.axis("off") |
|
|
|
plt.tight_layout() |
|
plt.show() |
|
except Exception as e: |
|
print(f"Error displaying images: {e}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |
|
python pix2pixinference.py --repo_id "uisikdag/gan-pix2pix-night2day" --input_image "night_image.jpg" --output_image "day_image.png" |
|
|
|
|