|
--- |
|
language: cs |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- Czech |
|
- GEC |
|
- GECCC dataset |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
base_model: google/byt5-base |
|
--- |
|
|
|
# Model Card for byt5-base-geccc-mate |
|
|
|
The `byt5-base-geccc-mate` model is a sequence-to-sequence model performing |
|
grammar error correction in Czech described in the paper |
|
[Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402). |
|
It is a finetuned version of [byt5-base](https://huggingface.co/google/byt5-base) using |
|
the MATE method and the [GECCC dataset](https://hdl.handle.net/11234/1-4861). |
|
|
|
## Model Description |
|
|
|
- **Developed by:** [Seznam.cz](https://seznam.cz) and [Charles University, MFF, ÚFAL](https://ufal.mff.cuni.cz/) |
|
- **Language(s) (NLP):** Czech |
|
- **Model type:** character-based encoder-decoder Transformer model |
|
- **Finetuned from model:** `google/byt5-base` |
|
- **Finetuned on:** |
|
- first synthetic errors generated by the MATE method (see [the paper](https://arxiv.org/abs/2506.22402)) |
|
- then the [GECCC dataset](https://hdl.handle.net/11234/1-4861) |
|
- **License:** CC BY-NC-SA 4.0 |
|
|
|
## Model Sources |
|
|
|
- **Repository:** https://github.com/ufal/tsd2025-gec |
|
- **Paper:** [Refining Czech GEC: Insights from a Multi-Experiment Approach](https://arxiv.org/abs/2506.22402) |
|
- **Dataset:** [GECCC dataset](https://hdl.handle.net/11234/1-4861) |
|
|
|
## Evaluation |
|
|
|
<div align="center"> |
|
<img src="https://github.com/ufal/tsd2025-gec/blob/main/figures/bubble_chart.svg?raw=true" width="75%" alt="Performance bubblechart" /> |
|
</div> |
|
|
|
| Model | Parameters | GECCC F-0.5 score | AKCES F-0.5 score | |
|
|:------|-----------:|:-----------------:|:-----------------:| |
|
| [byt5-small-geccc-mate](https://hf.co/ufal/byt5-small-geccc-mate) | 300M | 72.56 | |
|
| [**byt5-base-geccc-mate**](https://hf.co/ufal/byt5-base-geccc-mate) | **582M** | **75.15** | |
|
| [byt5-large-geccc-mate](https://hf.co/ufal/byt5-large-geccc-mate) | 1275M | 77.01 | |
|
| [byt5-large-akces-mate](https://hf.co/ufal/byt5-large-akces-mate) | 1275M | | 84.40 | |
|
| [transformer-base-geccc-mate](https://hf.co/ufal/transformer-base-geccc-mate) | 65M | 73.73 | |
|
|
|
## Uses |
|
|
|
The model can be directly used to process space-tokenized input Czech text and produce grammar-corrected Czech text. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. Note that the input must be **space-tokenized**, i.e., every token (using the [UDPipe 1](https://ufal.mff.cuni.cz/udpipe/1) tokenizer [czech-pdt-ud-2.5-191206.udpipe](https://hdl.handle.net/11234/1-3131)) must be space-separated. |
|
|
|
```python |
|
tokenizer = transformers.AutoTokenizer.from_pretrained("ufal/byt5-base-geccc-mate") |
|
model = transformers.AutoModelForSeq2SeqLM.from_pretrained("ufal/byt5-base-geccc-mate") |
|
|
|
batch = tokenizer(["Sveřepý šakali zavile vyly na býlí mesýc ."], return_tensors="pt") |
|
outputs = model.generate(batch.input_ids, max_length=256, num_beams=4) |
|
|
|
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) |
|
``` |
|
|
|
## BibTeX Citation |
|
|
|
``` |
|
@InProceedings{10.1007/978-3-032-02551-7_7, |
|
author="Pechman, Petr and Straka, Milan and Strakov{\'a}, Jana and N{\'a}plava, Jakub", |
|
editor="Ek{\v{s}}tein, Kamil and Konop{\'i}k, Miloslav and Pra{\v{z}}{\'a}k, Ond{\v{r}}ej and P{\'a}rtl, Franti{\v{s}}ek", |
|
title="Refining Czech GEC: Insights from a Multi-experiment Approach", |
|
booktitle="Text, Speech, and Dialogue", |
|
year="2026", |
|
publisher="Springer Nature Switzerland", |
|
address="Cham", |
|
pages="64--76", |
|
isbn="978-3-032-02551-7", |
|
doi="10.1007/978-3-032-02551-7_7" |
|
} |
|
``` |
|
|