Edit model card

Chinese BART

Model description

This model is pre-trained by UER-py, which is introduced in this paper. Besides, the models could also be pre-trained by TencentPretrain introduced in this paper, which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.

You can download the set of Chinese BART models either from the UER-py Modelzoo page, or via HuggingFace from the links below:

Link
BART-Base L=6/H=768 (Base)
BART-Large L=12/H=1024 (Large)

How to use

You can use this model directly with a pipeline for text2text generation (take the case of BART-Base):

>>> from transformers import BertTokenizer, BartForConditionalGeneration, Text2TextGenerationPipeline
>>> tokenizer = BertTokenizer.from_pretrained("uer/bart-base-chinese-cluecorpussmall")
>>> model = BartForConditionalGeneration.from_pretrained("uer/bart-base-chinese-cluecorpussmall")
>>> text2text_generator = Text2TextGenerationPipeline(model, tokenizer)  
>>> text2text_generator("中国的首都是[MASK]京", max_length=50, do_sample=False)
    [{'generated_text': '中 国 的 首 都 是 北 京'}]

Training data

CLUECorpusSmall is used as training data.

Training procedure

The model is pre-trained by UER-py on Tencent Cloud. We pre-train 1,000,000 steps with a sequence length of 512. Taking the case of BART-Base

python3 preprocess.py --corpus_path corpora/cluecorpussmall_bert.txt \
                      --vocab_path models/google_zh_vocab.txt \
                      --dataset_path cluecorpussmall_bart_seq512_dataset.pt \
                      --processes_num 32 --seq_length 512 \
                      --data_processor bart
python3 pretrain.py --dataset_path cluecorpussmall_bart_seq512_dataset.pt \
                    --vocab_path models/google_zh_vocab.txt \
                    --config_path models/bart/base_config.json \
                    --output_model_path models/cluecorpussmall_bart_base_seq512_model.bin \
                    --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
                    --total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
                    --learning_rate 5e-5 --batch_size 8 \
                    --span_masking --span_max_length 3

Finally, we convert the pre-trained model into Huggingface's format:

python3 scripts/convert_bart_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_bart_base_seq512_model.bin-1000000 \                                                                
                                                        --output_model_path pytorch_model.bin \                                                                                            
                                                        --layers_num 6

BibTeX entry and citation info

@article{lewis2019bart,
  title={Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension},
  author={Lewis, Mike and Liu, Yinhan and Goyal, Naman and Ghazvininejad, Marjan and Mohamed, Abdelrahman and Levy, Omer and Stoyanov, Ves and Zettlemoyer, Luke},
  journal={arXiv preprint arXiv:1910.13461},
  year={2019}
}

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
Downloads last month
14
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.