lmind_nq_train6000_eval6489_v1_recite_qa_gpt2-xl

This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3634
  • Accuracy: 0.8783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1506 1.0 1058 1.7260 0.7131
1.5141 2.0 2116 1.2579 0.7600
0.9961 3.0 3174 0.8674 0.8056
0.6354 4.0 4232 0.6007 0.8397
0.4213 5.0 5290 0.4423 0.8612
0.283 6.0 6348 0.3741 0.8703
0.2072 7.0 7406 0.3511 0.8742
0.1641 8.0 8464 0.3441 0.8764
0.1365 9.0 9522 0.3439 0.8769
0.1225 10.0 10580 0.3467 0.8774
0.1129 11.0 11638 0.3479 0.8776
0.1074 12.0 12696 0.3505 0.8778
0.1026 13.0 13754 0.3498 0.8774
0.1 14.0 14812 0.3514 0.8780
0.0953 15.0 15870 0.3595 0.8782
0.0944 16.0 16928 0.3604 0.8781
0.0911 17.0 17986 0.3604 0.8781
0.0905 18.0 19044 0.3617 0.8781
0.0879 19.0 20102 0.3662 0.8784
0.0866 20.0 21160 0.3634 0.8783

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_gpt2-xl

Finetuned
(46)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_gpt2-xl

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa
    self-reported
    0.878