lmind_nq_train1000_eval500_v1_recite_qa_gpt2-xl

This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind_nq_train1000_eval500_v1_recite_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3712
  • Accuracy: 0.8446

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1808 1.0 154 1.8207 0.6294
1.4349 2.0 308 1.2914 0.6957
0.8529 3.0 462 0.8566 0.7584
0.4829 4.0 616 0.5789 0.8049
0.2798 5.0 770 0.4421 0.8269
0.1904 6.0 924 0.3886 0.8373
0.1351 7.0 1078 0.3645 0.8411
0.1053 8.0 1232 0.3556 0.8431
0.0889 9.0 1386 0.3492 0.8432
0.0801 10.0 1540 0.3630 0.8441
0.0768 11.0 1694 0.3605 0.8445
0.0729 12.0 1848 0.3607 0.8444
0.0706 13.0 2002 0.3570 0.8450
0.07 14.0 2156 0.3634 0.8447
0.0697 15.0 2310 0.3627 0.8447
0.0681 16.0 2464 0.3645 0.8446
0.0685 17.0 2618 0.3652 0.8443
0.0683 18.0 2772 0.3646 0.8442
0.0665 19.0 2926 0.3732 0.8444
0.0659 20.0 3080 0.3712 0.8446

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
10
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tyzhu/lmind_nq_train1000_eval500_v1_recite_qa_gpt2-xl

Finetuned
(46)
this model

Dataset used to train tyzhu/lmind_nq_train1000_eval500_v1_recite_qa_gpt2-xl

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train1000_eval500_v1_recite_qa
    self-reported
    0.845