metadata
license: mit
base_model: gpt2-xl
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa
metrics:
- accuracy
model-index:
- name: lmind_hotpot_train8000_eval7405_v1_recite_qa_gpt2-xl
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa
type: tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.7664424114149346
lmind_hotpot_train8000_eval7405_v1_recite_qa_gpt2-xl
This model is a fine-tuned version of gpt2-xl on the tyzhu/lmind_hotpot_train8000_eval7405_v1_recite_qa dataset. It achieves the following results on the evaluation set:
- Loss: 0.4650
- Accuracy: 0.7664
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.9537 | 1.0 | 2179 | 0.6693 | 1.5623 |
1.4734 | 2.0 | 4358 | 0.6924 | 1.2099 |
1.0665 | 3.0 | 6537 | 0.7147 | 0.9178 |
0.7684 | 4.0 | 8716 | 0.7331 | 0.6988 |
0.548 | 5.0 | 10895 | 0.7466 | 0.5567 |
0.4039 | 6.0 | 13074 | 0.7551 | 0.4728 |
0.3044 | 7.0 | 15253 | 0.7600 | 0.4376 |
0.2446 | 8.0 | 17432 | 0.7628 | 0.4220 |
0.2039 | 9.0 | 19611 | 0.7642 | 0.4190 |
0.1787 | 10.0 | 21790 | 0.7649 | 0.4250 |
0.1652 | 11.0 | 23969 | 0.7654 | 0.4295 |
0.154 | 12.0 | 26148 | 0.7655 | 0.4366 |
0.1441 | 13.0 | 28327 | 0.7657 | 0.4429 |
0.143 | 14.0 | 30506 | 0.7657 | 0.4418 |
0.1366 | 15.0 | 32685 | 0.7661 | 0.4469 |
0.1335 | 16.0 | 34864 | 0.7661 | 0.4517 |
0.1299 | 17.0 | 37043 | 0.7662 | 0.4534 |
0.1271 | 18.0 | 39222 | 0.7664 | 0.4579 |
0.1268 | 19.0 | 41401 | 0.7664 | 0.4556 |
0.1238 | 20.0 | 43580 | 0.4650 | 0.7664 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1