|
import warnings |
|
import itertools |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from einops import rearrange, repeat |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import PeftAdapterMixin |
|
from diffusers.loaders.single_file_model import FromOriginalModelMixin |
|
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.modeling_outputs import Transformer2DModelOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.embeddings import get_1d_rotary_pos_embed |
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.embeddings import Timesteps |
|
|
|
import importlib.util |
|
import sys |
|
|
|
|
|
if sys.version_info < (3, 8): |
|
import importlib_metadata |
|
else: |
|
import importlib.metadata as importlib_metadata |
|
|
|
def _is_package_available(pkg_name: str): |
|
pkg_exists = importlib.util.find_spec(pkg_name) is not None |
|
pkg_version = "N/A" |
|
|
|
if pkg_exists: |
|
try: |
|
pkg_version = importlib_metadata.version(pkg_name) |
|
except (ImportError, importlib_metadata.PackageNotFoundError): |
|
pkg_exists = False |
|
|
|
return pkg_exists, pkg_version |
|
|
|
_triton_available, _triton_version = _is_package_available("triton") |
|
_flash_attn_available, _flash_attn_version = _is_package_available("flash_attn") |
|
|
|
def is_triton_available(): |
|
return _triton_available |
|
|
|
def is_flash_attn_available(): |
|
return _flash_attn_available |
|
|
|
if is_triton_available(): |
|
|
|
import triton |
|
import triton.language as tl |
|
|
|
|
|
from typing import Callable |
|
|
|
|
|
def custom_amp_decorator(dec: Callable, cuda_amp_deprecated: bool): |
|
def decorator(*args, **kwargs): |
|
if cuda_amp_deprecated: |
|
kwargs["device_type"] = "cuda" |
|
return dec(*args, **kwargs) |
|
return decorator |
|
|
|
|
|
if hasattr(torch.amp, "custom_fwd"): |
|
deprecated = True |
|
from torch.amp import custom_fwd, custom_bwd |
|
else: |
|
deprecated = False |
|
from torch.cuda.amp import custom_fwd, custom_bwd |
|
|
|
custom_fwd = custom_amp_decorator(custom_fwd, deprecated) |
|
custom_bwd = custom_amp_decorator(custom_bwd, deprecated) |
|
|
|
|
|
def triton_autotune_configs(): |
|
|
|
configs=[] |
|
|
|
max_threads_per_block=1024 |
|
|
|
warp_size=getattr(torch.cuda.get_device_properties(torch.cuda.current_device()), "warp_size", 32) |
|
|
|
warp_count=1 |
|
while warp_count*warp_size <= max_threads_per_block: |
|
configs.append(triton.Config({}, num_warps=warp_count)) |
|
warp_count*=2 |
|
return configs |
|
|
|
@triton.autotune( |
|
configs=triton_autotune_configs(), |
|
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"], |
|
) |
|
|
|
|
|
@triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None}) |
|
@triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None}) |
|
@triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None}) |
|
@triton.jit |
|
def _layer_norm_fwd_1pass_kernel( |
|
X, |
|
Y, |
|
W, |
|
B, |
|
RESIDUAL, |
|
X1, |
|
W1, |
|
B1, |
|
Y1, |
|
RESIDUAL_OUT, |
|
ROWSCALE, |
|
SEEDS, |
|
DROPOUT_MASK, |
|
Mean, |
|
Rstd, |
|
stride_x_row, |
|
stride_y_row, |
|
stride_res_row, |
|
stride_res_out_row, |
|
stride_x1_row, |
|
stride_y1_row, |
|
M, |
|
N, |
|
eps, |
|
dropout_p, |
|
zero_centered_weight, |
|
IS_RMS_NORM: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
HAS_RESIDUAL: tl.constexpr, |
|
STORE_RESIDUAL_OUT: tl.constexpr, |
|
HAS_BIAS: tl.constexpr, |
|
HAS_DROPOUT: tl.constexpr, |
|
STORE_DROPOUT_MASK: tl.constexpr, |
|
HAS_ROWSCALE: tl.constexpr, |
|
HAS_X1: tl.constexpr, |
|
HAS_W1: tl.constexpr, |
|
HAS_B1: tl.constexpr, |
|
): |
|
|
|
row = tl.program_id(0) |
|
X += row * stride_x_row |
|
Y += row * stride_y_row |
|
if HAS_RESIDUAL: |
|
RESIDUAL += row * stride_res_row |
|
if STORE_RESIDUAL_OUT: |
|
RESIDUAL_OUT += row * stride_res_out_row |
|
if HAS_X1: |
|
X1 += row * stride_x1_row |
|
if HAS_W1: |
|
Y1 += row * stride_y1_row |
|
|
|
cols = tl.arange(0, BLOCK_N) |
|
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32) |
|
if HAS_ROWSCALE: |
|
rowscale = tl.load(ROWSCALE + row).to(tl.float32) |
|
x *= rowscale |
|
if HAS_DROPOUT: |
|
|
|
|
|
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p |
|
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0) |
|
if STORE_DROPOUT_MASK: |
|
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N) |
|
if HAS_X1: |
|
x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32) |
|
if HAS_ROWSCALE: |
|
rowscale = tl.load(ROWSCALE + M + row).to(tl.float32) |
|
x1 *= rowscale |
|
if HAS_DROPOUT: |
|
|
|
|
|
keep_mask = ( |
|
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p |
|
) |
|
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0) |
|
if STORE_DROPOUT_MASK: |
|
tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N) |
|
x += x1 |
|
if HAS_RESIDUAL: |
|
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32) |
|
x += residual |
|
if STORE_RESIDUAL_OUT: |
|
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N) |
|
if not IS_RMS_NORM: |
|
mean = tl.sum(x, axis=0) / N |
|
tl.store(Mean + row, mean) |
|
xbar = tl.where(cols < N, x - mean, 0.0) |
|
var = tl.sum(xbar * xbar, axis=0) / N |
|
else: |
|
xbar = tl.where(cols < N, x, 0.0) |
|
var = tl.sum(xbar * xbar, axis=0) / N |
|
rstd = 1 / tl.sqrt(var + eps) |
|
tl.store(Rstd + row, rstd) |
|
|
|
mask = cols < N |
|
w = tl.load(W + cols, mask=mask).to(tl.float32) |
|
if zero_centered_weight: |
|
w += 1.0 |
|
if HAS_BIAS: |
|
b = tl.load(B + cols, mask=mask).to(tl.float32) |
|
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd |
|
y = x_hat * w + b if HAS_BIAS else x_hat * w |
|
|
|
tl.store(Y + cols, y, mask=mask) |
|
if HAS_W1: |
|
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32) |
|
if zero_centered_weight: |
|
w1 += 1.0 |
|
if HAS_B1: |
|
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32) |
|
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1 |
|
tl.store(Y1 + cols, y1, mask=mask) |
|
|
|
|
|
def _layer_norm_fwd( |
|
x, |
|
weight, |
|
bias, |
|
eps, |
|
residual=None, |
|
x1=None, |
|
weight1=None, |
|
bias1=None, |
|
dropout_p=0.0, |
|
rowscale=None, |
|
out_dtype=None, |
|
residual_dtype=None, |
|
zero_centered_weight=False, |
|
is_rms_norm=False, |
|
return_dropout_mask=False, |
|
out=None, |
|
residual_out=None |
|
): |
|
if residual is not None: |
|
residual_dtype = residual.dtype |
|
M, N = x.shape |
|
assert x.stride(-1) == 1 |
|
if residual is not None: |
|
assert residual.stride(-1) == 1 |
|
assert residual.shape == (M, N) |
|
assert weight.shape == (N,) |
|
assert weight.stride(-1) == 1 |
|
if bias is not None: |
|
assert bias.stride(-1) == 1 |
|
assert bias.shape == (N,) |
|
if x1 is not None: |
|
assert x1.shape == x.shape |
|
assert rowscale is None |
|
assert x1.stride(-1) == 1 |
|
if weight1 is not None: |
|
assert weight1.shape == (N,) |
|
assert weight1.stride(-1) == 1 |
|
if bias1 is not None: |
|
assert bias1.shape == (N,) |
|
assert bias1.stride(-1) == 1 |
|
if rowscale is not None: |
|
assert rowscale.is_contiguous() |
|
assert rowscale.shape == (M,) |
|
|
|
if out is None: |
|
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype) |
|
else: |
|
assert out.shape == x.shape |
|
assert out.stride(-1) == 1 |
|
if weight1 is not None: |
|
y1 = torch.empty_like(out) |
|
assert y1.stride(-1) == 1 |
|
else: |
|
y1 = None |
|
if ( |
|
residual is not None |
|
or (residual_dtype is not None and residual_dtype != x.dtype) |
|
or dropout_p > 0.0 |
|
or rowscale is not None |
|
or x1 is not None |
|
): |
|
if residual_out is None: |
|
residual_out = torch.empty( |
|
M, N, device=x.device, dtype=residual_dtype if residual_dtype is not None else x.dtype |
|
) |
|
else: |
|
assert residual_out.shape == x.shape |
|
assert residual_out.stride(-1) == 1 |
|
else: |
|
residual_out = None |
|
mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None |
|
rstd = torch.empty((M,), dtype=torch.float32, device=x.device) |
|
if dropout_p > 0.0: |
|
seeds = torch.randint( |
|
2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64 |
|
) |
|
else: |
|
seeds = None |
|
if return_dropout_mask and dropout_p > 0.0: |
|
dropout_mask = torch.empty(M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool) |
|
else: |
|
dropout_mask = None |
|
|
|
MAX_FUSED_SIZE = 65536 // x.element_size() |
|
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) |
|
if N > BLOCK_N: |
|
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") |
|
with torch.cuda.device(x.device.index): |
|
_layer_norm_fwd_1pass_kernel[(M,)]( |
|
x, |
|
out, |
|
weight, |
|
bias, |
|
residual, |
|
x1, |
|
weight1, |
|
bias1, |
|
y1, |
|
residual_out, |
|
rowscale, |
|
seeds, |
|
dropout_mask, |
|
mean, |
|
rstd, |
|
x.stride(0), |
|
out.stride(0), |
|
residual.stride(0) if residual is not None else 0, |
|
residual_out.stride(0) if residual_out is not None else 0, |
|
x1.stride(0) if x1 is not None else 0, |
|
y1.stride(0) if y1 is not None else 0, |
|
M, |
|
N, |
|
eps, |
|
dropout_p, |
|
zero_centered_weight, |
|
is_rms_norm, |
|
BLOCK_N, |
|
residual is not None, |
|
residual_out is not None, |
|
bias is not None, |
|
dropout_p > 0.0, |
|
dropout_mask is not None, |
|
rowscale is not None, |
|
) |
|
|
|
if dropout_mask is not None and x1 is not None: |
|
dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0) |
|
else: |
|
dropout_mask1 = None |
|
return ( |
|
out, |
|
y1, |
|
mean, |
|
rstd, |
|
residual_out if residual_out is not None else x, |
|
seeds, |
|
dropout_mask, |
|
dropout_mask1, |
|
) |
|
|
|
@triton.autotune( |
|
configs=triton_autotune_configs(), |
|
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"], |
|
) |
|
|
|
|
|
|
|
@triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None}) |
|
@triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None}) |
|
@triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None}) |
|
@triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None}) |
|
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None}) |
|
@triton.jit |
|
def _layer_norm_bwd_kernel( |
|
X, |
|
W, |
|
B, |
|
Y, |
|
DY, |
|
DX, |
|
DW, |
|
DB, |
|
DRESIDUAL, |
|
W1, |
|
DY1, |
|
DX1, |
|
DW1, |
|
DB1, |
|
DRESIDUAL_IN, |
|
ROWSCALE, |
|
SEEDS, |
|
Mean, |
|
Rstd, |
|
stride_x_row, |
|
stride_y_row, |
|
stride_dy_row, |
|
stride_dx_row, |
|
stride_dres_row, |
|
stride_dy1_row, |
|
stride_dx1_row, |
|
stride_dres_in_row, |
|
M, |
|
N, |
|
eps, |
|
dropout_p, |
|
zero_centered_weight, |
|
rows_per_program, |
|
IS_RMS_NORM: tl.constexpr, |
|
BLOCK_N: tl.constexpr, |
|
HAS_DRESIDUAL: tl.constexpr, |
|
STORE_DRESIDUAL: tl.constexpr, |
|
HAS_BIAS: tl.constexpr, |
|
HAS_DROPOUT: tl.constexpr, |
|
HAS_ROWSCALE: tl.constexpr, |
|
HAS_DY1: tl.constexpr, |
|
HAS_DX1: tl.constexpr, |
|
HAS_B1: tl.constexpr, |
|
RECOMPUTE_OUTPUT: tl.constexpr, |
|
): |
|
|
|
row_block_id = tl.program_id(0) |
|
row_start = row_block_id * rows_per_program |
|
|
|
cols = tl.arange(0, BLOCK_N) |
|
mask = cols < N |
|
X += row_start * stride_x_row |
|
if HAS_DRESIDUAL: |
|
DRESIDUAL += row_start * stride_dres_row |
|
if STORE_DRESIDUAL: |
|
DRESIDUAL_IN += row_start * stride_dres_in_row |
|
DY += row_start * stride_dy_row |
|
DX += row_start * stride_dx_row |
|
if HAS_DY1: |
|
DY1 += row_start * stride_dy1_row |
|
if HAS_DX1: |
|
DX1 += row_start * stride_dx1_row |
|
if RECOMPUTE_OUTPUT: |
|
Y += row_start * stride_y_row |
|
w = tl.load(W + cols, mask=mask).to(tl.float32) |
|
if zero_centered_weight: |
|
w += 1.0 |
|
if RECOMPUTE_OUTPUT and HAS_BIAS: |
|
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32) |
|
if HAS_DY1: |
|
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32) |
|
if zero_centered_weight: |
|
w1 += 1.0 |
|
dw = tl.zeros((BLOCK_N,), dtype=tl.float32) |
|
if HAS_BIAS: |
|
db = tl.zeros((BLOCK_N,), dtype=tl.float32) |
|
if HAS_DY1: |
|
dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32) |
|
if HAS_B1: |
|
db1 = tl.zeros((BLOCK_N,), dtype=tl.float32) |
|
row_end = min((row_block_id + 1) * rows_per_program, M) |
|
for row in range(row_start, row_end): |
|
|
|
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32) |
|
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32) |
|
if HAS_DY1: |
|
dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32) |
|
if not IS_RMS_NORM: |
|
mean = tl.load(Mean + row) |
|
rstd = tl.load(Rstd + row) |
|
|
|
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd |
|
xhat = tl.where(mask, xhat, 0.0) |
|
if RECOMPUTE_OUTPUT: |
|
y = xhat * w + b if HAS_BIAS else xhat * w |
|
tl.store(Y + cols, y, mask=mask) |
|
wdy = w * dy |
|
dw += dy * xhat |
|
if HAS_BIAS: |
|
db += dy |
|
if HAS_DY1: |
|
wdy += w1 * dy1 |
|
dw1 += dy1 * xhat |
|
if HAS_B1: |
|
db1 += dy1 |
|
if not IS_RMS_NORM: |
|
c1 = tl.sum(xhat * wdy, axis=0) / N |
|
c2 = tl.sum(wdy, axis=0) / N |
|
dx = (wdy - (xhat * c1 + c2)) * rstd |
|
else: |
|
c1 = tl.sum(xhat * wdy, axis=0) / N |
|
dx = (wdy - xhat * c1) * rstd |
|
if HAS_DRESIDUAL: |
|
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32) |
|
dx += dres |
|
|
|
if STORE_DRESIDUAL: |
|
tl.store(DRESIDUAL_IN + cols, dx, mask=mask) |
|
if HAS_DX1: |
|
if HAS_DROPOUT: |
|
keep_mask = ( |
|
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p |
|
) |
|
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0) |
|
else: |
|
dx1 = dx |
|
tl.store(DX1 + cols, dx1, mask=mask) |
|
if HAS_DROPOUT: |
|
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p |
|
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0) |
|
if HAS_ROWSCALE: |
|
rowscale = tl.load(ROWSCALE + row).to(tl.float32) |
|
dx *= rowscale |
|
tl.store(DX + cols, dx, mask=mask) |
|
|
|
X += stride_x_row |
|
if HAS_DRESIDUAL: |
|
DRESIDUAL += stride_dres_row |
|
if STORE_DRESIDUAL: |
|
DRESIDUAL_IN += stride_dres_in_row |
|
if RECOMPUTE_OUTPUT: |
|
Y += stride_y_row |
|
DY += stride_dy_row |
|
DX += stride_dx_row |
|
if HAS_DY1: |
|
DY1 += stride_dy1_row |
|
if HAS_DX1: |
|
DX1 += stride_dx1_row |
|
tl.store(DW + row_block_id * N + cols, dw, mask=mask) |
|
if HAS_BIAS: |
|
tl.store(DB + row_block_id * N + cols, db, mask=mask) |
|
if HAS_DY1: |
|
tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask) |
|
if HAS_B1: |
|
tl.store(DB1 + row_block_id * N + cols, db1, mask=mask) |
|
|
|
|
|
def _layer_norm_bwd( |
|
dy, |
|
x, |
|
weight, |
|
bias, |
|
eps, |
|
mean, |
|
rstd, |
|
dresidual=None, |
|
dy1=None, |
|
weight1=None, |
|
bias1=None, |
|
seeds=None, |
|
dropout_p=0.0, |
|
rowscale=None, |
|
has_residual=False, |
|
has_x1=False, |
|
zero_centered_weight=False, |
|
is_rms_norm=False, |
|
x_dtype=None, |
|
recompute_output=False, |
|
): |
|
M, N = x.shape |
|
assert x.stride(-1) == 1 |
|
assert dy.stride(-1) == 1 |
|
assert dy.shape == (M, N) |
|
if dresidual is not None: |
|
assert dresidual.stride(-1) == 1 |
|
assert dresidual.shape == (M, N) |
|
assert weight.shape == (N,) |
|
assert weight.stride(-1) == 1 |
|
if bias is not None: |
|
assert bias.stride(-1) == 1 |
|
assert bias.shape == (N,) |
|
if dy1 is not None: |
|
assert weight1 is not None |
|
assert dy1.shape == dy.shape |
|
assert dy1.stride(-1) == 1 |
|
if weight1 is not None: |
|
assert weight1.shape == (N,) |
|
assert weight1.stride(-1) == 1 |
|
if bias1 is not None: |
|
assert bias1.shape == (N,) |
|
assert bias1.stride(-1) == 1 |
|
if seeds is not None: |
|
assert seeds.is_contiguous() |
|
assert seeds.shape == (M if not has_x1 else M * 2,) |
|
if rowscale is not None: |
|
assert rowscale.is_contiguous() |
|
assert rowscale.shape == (M,) |
|
|
|
dx = ( |
|
torch.empty_like(x) |
|
if x_dtype is None |
|
else torch.empty(M, N, dtype=x_dtype, device=x.device) |
|
) |
|
dresidual_in = ( |
|
torch.empty_like(x) |
|
if has_residual |
|
and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1) |
|
else None |
|
) |
|
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None |
|
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None |
|
if recompute_output: |
|
assert weight1 is None, "recompute_output is not supported with parallel LayerNorm" |
|
|
|
|
|
MAX_FUSED_SIZE = 65536 // x.element_size() |
|
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N)) |
|
if N > BLOCK_N: |
|
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.") |
|
|
|
|
|
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count * 8 |
|
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device) |
|
_db = ( |
|
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device) |
|
if bias is not None |
|
else None |
|
) |
|
_dw1 = torch.empty_like(_dw) if weight1 is not None else None |
|
_db1 = torch.empty_like(_db) if bias1 is not None else None |
|
rows_per_program = math.ceil(M / sm_count) |
|
grid = (sm_count,) |
|
with torch.cuda.device(x.device.index): |
|
_layer_norm_bwd_kernel[grid]( |
|
x, |
|
weight, |
|
bias, |
|
y, |
|
dy, |
|
dx, |
|
_dw, |
|
_db, |
|
dresidual, |
|
weight1, |
|
dy1, |
|
dx1, |
|
_dw1, |
|
_db1, |
|
dresidual_in, |
|
rowscale, |
|
seeds, |
|
mean, |
|
rstd, |
|
x.stride(0), |
|
0 if not recompute_output else y.stride(0), |
|
dy.stride(0), |
|
dx.stride(0), |
|
dresidual.stride(0) if dresidual is not None else 0, |
|
dy1.stride(0) if dy1 is not None else 0, |
|
dx1.stride(0) if dx1 is not None else 0, |
|
dresidual_in.stride(0) if dresidual_in is not None else 0, |
|
M, |
|
N, |
|
eps, |
|
dropout_p, |
|
zero_centered_weight, |
|
rows_per_program, |
|
is_rms_norm, |
|
BLOCK_N, |
|
dresidual is not None, |
|
dresidual_in is not None, |
|
bias is not None, |
|
dropout_p > 0.0, |
|
) |
|
dw = _dw.sum(0).to(weight.dtype) |
|
db = _db.sum(0).to(bias.dtype) if bias is not None else None |
|
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None |
|
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None |
|
|
|
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None: |
|
dresidual_in = dx |
|
if has_x1 and dropout_p == 0.0: |
|
dx1 = dx |
|
return ( |
|
(dx, dw, db, dresidual_in, dx1, dw1, db1) |
|
if not recompute_output |
|
else (dx, dw, db, dresidual_in, dx1, dw1, db1, y) |
|
) |
|
|
|
class LayerNormFn(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x, |
|
weight, |
|
bias, |
|
residual=None, |
|
x1=None, |
|
weight1=None, |
|
bias1=None, |
|
eps=1e-6, |
|
dropout_p=0.0, |
|
rowscale=None, |
|
prenorm=False, |
|
residual_in_fp32=False, |
|
zero_centered_weight=False, |
|
is_rms_norm=False, |
|
return_dropout_mask=False, |
|
out=None, |
|
residual_out=None |
|
): |
|
x_shape_og = x.shape |
|
|
|
if x.numel() == 0: |
|
ctx.zero_seq_length = True |
|
|
|
|
|
ctx.x_shape_og = x_shape_og |
|
ctx.weight_shape = weight.shape |
|
ctx.weight_dtype = weight.dtype |
|
ctx.weight_device = weight.device |
|
|
|
ctx.has_bias = bias is not None |
|
ctx.bias_shape = bias.shape if bias is not None else None |
|
ctx.bias_dtype = bias.dtype if bias is not None else None |
|
ctx.bias_device = bias.device if bias is not None else None |
|
|
|
ctx.has_weight1 = weight1 is not None |
|
ctx.weight1_shape = weight1.shape if weight1 is not None else None |
|
ctx.weight1_dtype = weight1.dtype if weight1 is not None else None |
|
ctx.weight1_device = weight1.device if weight1 is not None else None |
|
|
|
ctx.has_bias1 = bias1 is not None |
|
ctx.bias1_shape = bias1.shape if bias1 is not None else None |
|
ctx.bias1_dtype = bias1.dtype if bias1 is not None else None |
|
ctx.bias1_device = bias1.device if bias1 is not None else None |
|
|
|
ctx.has_residual = residual is not None |
|
ctx.has_x1 = x1 is not None |
|
ctx.dropout_p = dropout_p |
|
|
|
|
|
y = x |
|
y1 = torch.empty_like(x) if x1 is not None else None |
|
|
|
|
|
residual_out = torch.empty(x.shape, |
|
dtype=torch.float32 if residual_in_fp32 else x.dtype, |
|
device=x.device) if prenorm else None |
|
|
|
|
|
dropout_mask = None |
|
dropout_mask1 = None |
|
if return_dropout_mask: |
|
dropout_mask = torch.empty_like(x, dtype=torch.uint8) |
|
if x1 is not None: |
|
dropout_mask1 = torch.empty_like(x, dtype=torch.uint8) |
|
|
|
|
|
if not return_dropout_mask: |
|
if weight1 is None: |
|
return y if not prenorm else (y, residual_out) |
|
else: |
|
return (y, y1) if not prenorm else (y, y1, residual_out) |
|
else: |
|
if weight1 is None: |
|
return ((y, dropout_mask, dropout_mask1) if not prenorm |
|
else (y, residual_out, dropout_mask, dropout_mask1)) |
|
else: |
|
return ((y, y1, dropout_mask, dropout_mask1) if not prenorm |
|
else (y, y1, residual_out, dropout_mask, dropout_mask1)) |
|
|
|
ctx.zero_seq_length = False |
|
|
|
x = x.reshape(-1, x.shape[-1]) |
|
if x.stride(-1) != 1: |
|
x = x.contiguous() |
|
if residual is not None: |
|
assert residual.shape == x_shape_og |
|
residual = residual.reshape(-1, residual.shape[-1]) |
|
if residual.stride(-1) != 1: |
|
residual = residual.contiguous() |
|
if x1 is not None: |
|
assert x1.shape == x_shape_og |
|
assert rowscale is None, "rowscale is not supported with parallel LayerNorm" |
|
x1 = x1.reshape(-1, x1.shape[-1]) |
|
if x1.stride(-1) != 1: |
|
x1 = x1.contiguous() |
|
weight = weight.contiguous() |
|
if bias is not None: |
|
bias = bias.contiguous() |
|
if weight1 is not None: |
|
weight1 = weight1.contiguous() |
|
if bias1 is not None: |
|
bias1 = bias1.contiguous() |
|
if rowscale is not None: |
|
rowscale = rowscale.reshape(-1).contiguous() |
|
residual_dtype = ( |
|
residual.dtype |
|
if residual is not None |
|
else (torch.float32 if residual_in_fp32 else None) |
|
) |
|
if out is not None: |
|
out = out.reshape(-1, out.shape[-1]) |
|
if residual_out is not None: |
|
residual_out = residual_out.reshape(-1, residual_out.shape[-1]) |
|
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd( |
|
x, |
|
weight, |
|
bias, |
|
eps, |
|
residual, |
|
x1, |
|
weight1, |
|
bias1, |
|
dropout_p=dropout_p, |
|
rowscale=rowscale, |
|
residual_dtype=residual_dtype, |
|
zero_centered_weight=zero_centered_weight, |
|
is_rms_norm=is_rms_norm, |
|
return_dropout_mask=return_dropout_mask, |
|
out=out, |
|
residual_out=residual_out |
|
) |
|
ctx.save_for_backward( |
|
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd |
|
) |
|
ctx.x_shape_og = x_shape_og |
|
ctx.eps = eps |
|
ctx.dropout_p = dropout_p |
|
ctx.is_rms_norm = is_rms_norm |
|
ctx.has_residual = residual is not None |
|
ctx.has_x1 = x1 is not None |
|
ctx.prenorm = prenorm |
|
ctx.x_dtype = x.dtype |
|
ctx.zero_centered_weight = zero_centered_weight |
|
y = y.reshape(x_shape_og) |
|
y1 = y1.reshape(x_shape_og) if y1 is not None else None |
|
residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None |
|
dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None |
|
dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None |
|
if not return_dropout_mask: |
|
if weight1 is None: |
|
return y if not prenorm else (y, residual_out) |
|
else: |
|
return (y, y1) if not prenorm else (y, y1, residual_out) |
|
else: |
|
if weight1 is None: |
|
return ( |
|
(y, dropout_mask, dropout_mask1) |
|
if not prenorm |
|
else (y, residual_out, dropout_mask, dropout_mask1) |
|
) |
|
else: |
|
return ( |
|
(y, y1, dropout_mask, dropout_mask1) |
|
if not prenorm |
|
else (y, y1, residual_out, dropout_mask, dropout_mask1) |
|
) |
|
|
|
@staticmethod |
|
def backward(ctx, dy, *args): |
|
if ctx.zero_seq_length: |
|
return ( |
|
torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device), |
|
torch.zeros(ctx.weight_shape, dtype=ctx.weight_dtype, device=ctx.weight_device), |
|
torch.zeros(ctx.bias_shape, dtype=ctx.bias_dtype, device=ctx.bias_device) if ctx.has_bias else None, |
|
torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device) if ctx.has_residual else None, |
|
torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device) if ctx.has_x1 and ctx.dropout_p > 0.0 else None, |
|
torch.zeros(ctx.weight1_shape, dtype=ctx.weight1_dtype, device=ctx.weight1_device) if ctx.has_weight1 else None, |
|
torch.zeros(ctx.bias1_shape, dtype=ctx.bias1_dtype, device=ctx.bias1_device) if ctx.has_bias1 else None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors |
|
dy = dy.reshape(-1, dy.shape[-1]) |
|
if dy.stride(-1) != 1: |
|
dy = dy.contiguous() |
|
assert dy.shape == x.shape |
|
if weight1 is not None: |
|
dy1, args = args[0], args[1:] |
|
dy1 = dy1.reshape(-1, dy1.shape[-1]) |
|
if dy1.stride(-1) != 1: |
|
dy1 = dy1.contiguous() |
|
assert dy1.shape == x.shape |
|
else: |
|
dy1 = None |
|
if ctx.prenorm: |
|
dresidual = args[0] |
|
dresidual = dresidual.reshape(-1, dresidual.shape[-1]) |
|
if dresidual.stride(-1) != 1: |
|
dresidual = dresidual.contiguous() |
|
assert dresidual.shape == x.shape |
|
else: |
|
dresidual = None |
|
|
|
dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd( |
|
dy, |
|
x, |
|
weight, |
|
bias, |
|
ctx.eps, |
|
mean, |
|
rstd, |
|
dresidual, |
|
dy1, |
|
weight1, |
|
bias1, |
|
seeds, |
|
ctx.dropout_p, |
|
rowscale, |
|
ctx.has_residual, |
|
ctx.has_x1, |
|
ctx.zero_centered_weight, |
|
ctx.is_rms_norm, |
|
x_dtype=ctx.x_dtype, |
|
) |
|
return ( |
|
dx.reshape(ctx.x_shape_og), |
|
dw, |
|
db, |
|
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None, |
|
dx1.reshape(ctx.x_shape_og) if dx1 is not None else None, |
|
dw1, |
|
db1, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
None, |
|
) |
|
|
|
def rms_norm_fn( |
|
x, |
|
weight, |
|
bias, |
|
residual=None, |
|
x1=None, |
|
weight1=None, |
|
bias1=None, |
|
eps=1e-6, |
|
dropout_p=0.0, |
|
rowscale=None, |
|
prenorm=False, |
|
residual_in_fp32=False, |
|
zero_centered_weight=False, |
|
return_dropout_mask=False, |
|
out=None, |
|
residual_out=None |
|
): |
|
return LayerNormFn.apply( |
|
x, |
|
weight, |
|
bias, |
|
residual, |
|
x1, |
|
weight1, |
|
bias1, |
|
eps, |
|
dropout_p, |
|
rowscale, |
|
prenorm, |
|
residual_in_fp32, |
|
zero_centered_weight, |
|
True, |
|
return_dropout_mask, |
|
out, |
|
residual_out |
|
) |
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, zero_centered_weight=False, |
|
device=None, dtype=None): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.eps = eps |
|
if dropout_p > 0.0: |
|
self.drop = torch.nn.Dropout(dropout_p) |
|
else: |
|
self.drop = None |
|
self.zero_centered_weight = zero_centered_weight |
|
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs)) |
|
self.register_parameter("bias", None) |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
if not self.zero_centered_weight: |
|
torch.nn.init.ones_(self.weight) |
|
else: |
|
torch.nn.init.zeros_(self.weight) |
|
|
|
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False): |
|
return rms_norm_fn( |
|
x, |
|
self.weight, |
|
self.bias, |
|
residual=residual, |
|
eps=self.eps, |
|
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0, |
|
prenorm=prenorm, |
|
residual_in_fp32=residual_in_fp32, |
|
zero_centered_weight=self.zero_centered_weight, |
|
) |
|
else: |
|
from torch.nn import RMSNorm |
|
warnings.warn("Cannot import triton, install triton to use fused RMSNorm for better performance") |
|
|
|
def swiglu(x, y): |
|
return F.silu(x.float(), inplace=False).to(x.dtype) * y |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class TimestepEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
time_embed_dim: int, |
|
act_fn: str = "silu", |
|
out_dim: int = None, |
|
post_act_fn: Optional[str] = None, |
|
cond_proj_dim=None, |
|
sample_proj_bias=True, |
|
): |
|
super().__init__() |
|
|
|
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias) |
|
|
|
if cond_proj_dim is not None: |
|
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False) |
|
else: |
|
self.cond_proj = None |
|
|
|
self.act = get_activation(act_fn) |
|
|
|
if out_dim is not None: |
|
time_embed_dim_out = out_dim |
|
else: |
|
time_embed_dim_out = time_embed_dim |
|
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias) |
|
|
|
if post_act_fn is None: |
|
self.post_act = None |
|
else: |
|
self.post_act = get_activation(post_act_fn) |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self): |
|
nn.init.normal_(self.linear_1.weight, std=0.02) |
|
nn.init.zeros_(self.linear_1.bias) |
|
nn.init.normal_(self.linear_2.weight, std=0.02) |
|
nn.init.zeros_(self.linear_2.bias) |
|
|
|
def forward(self, sample, condition=None): |
|
if condition is not None: |
|
sample = sample + self.cond_proj(condition) |
|
sample = self.linear_1(sample) |
|
|
|
if self.act is not None: |
|
sample = self.act(sample) |
|
|
|
sample = self.linear_2(sample) |
|
|
|
if self.post_act is not None: |
|
sample = self.post_act(sample) |
|
return sample |
|
|
|
def apply_rotary_emb( |
|
x: torch.Tensor, |
|
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], |
|
use_real: bool = True, |
|
use_real_unbind_dim: int = -1, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings |
|
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are |
|
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting |
|
tensors contain rotary embeddings and are returned as real tensors. |
|
|
|
Args: |
|
x (`torch.Tensor`): |
|
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply |
|
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],) |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. |
|
""" |
|
if use_real: |
|
cos, sin = freqs_cis |
|
cos = cos[None, None] |
|
sin = sin[None, None] |
|
cos, sin = cos.to(x.device), sin.to(x.device) |
|
|
|
if use_real_unbind_dim == -1: |
|
|
|
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) |
|
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) |
|
elif use_real_unbind_dim == -2: |
|
|
|
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) |
|
x_rotated = torch.cat([-x_imag, x_real], dim=-1) |
|
else: |
|
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.") |
|
|
|
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) |
|
|
|
return out |
|
else: |
|
|
|
|
|
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], x.shape[-1] // 2, 2)) |
|
freqs_cis = freqs_cis.unsqueeze(2) |
|
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3) |
|
|
|
return x_out.type_as(x) |
|
|
|
class OmniGen2RotaryPosEmbed(nn.Module): |
|
def __init__(self, theta: int, |
|
axes_dim: Tuple[int, int, int], |
|
axes_lens: Tuple[int, int, int] = (300, 512, 512), |
|
patch_size: int = 2): |
|
super().__init__() |
|
self.theta = theta |
|
self.axes_dim = axes_dim |
|
self.axes_lens = axes_lens |
|
self.patch_size = patch_size |
|
|
|
@staticmethod |
|
def get_freqs_cis(axes_dim: Tuple[int, int, int], |
|
axes_lens: Tuple[int, int, int], |
|
theta: int) -> List[torch.Tensor]: |
|
freqs_cis = [] |
|
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64 |
|
for i, (d, e) in enumerate(zip(axes_dim, axes_lens)): |
|
emb = get_1d_rotary_pos_embed(d, e, theta=theta, freqs_dtype=freqs_dtype) |
|
freqs_cis.append(emb) |
|
return freqs_cis |
|
|
|
def _get_freqs_cis(self, freqs_cis, ids: torch.Tensor) -> torch.Tensor: |
|
device = ids.device |
|
if ids.device.type == "mps": |
|
ids = ids.to("cpu") |
|
|
|
result = [] |
|
for i in range(len(self.axes_dim)): |
|
freqs = freqs_cis[i].to(ids.device) |
|
index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64) |
|
result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index)) |
|
return torch.cat(result, dim=-1).to(device) |
|
|
|
def forward( |
|
self, |
|
freqs_cis, |
|
attention_mask, |
|
l_effective_ref_img_len, |
|
l_effective_img_len, |
|
ref_img_sizes, |
|
img_sizes, |
|
device |
|
): |
|
batch_size = len(attention_mask) |
|
p = self.patch_size |
|
|
|
encoder_seq_len = attention_mask.shape[1] |
|
l_effective_cap_len = attention_mask.sum(dim=1).tolist() |
|
|
|
seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)] |
|
|
|
max_seq_len = max(seq_lengths) |
|
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len]) |
|
max_img_len = max(l_effective_img_len) |
|
|
|
|
|
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device) |
|
|
|
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)): |
|
|
|
position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3") |
|
|
|
pe_shift = cap_seq_len |
|
pe_shift_len = cap_seq_len |
|
|
|
if ref_img_sizes[i] is not None: |
|
for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]): |
|
H, W = ref_img_size |
|
ref_H_tokens, ref_W_tokens = H // p, W // p |
|
assert ref_H_tokens * ref_W_tokens == ref_img_len |
|
|
|
|
|
row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten() |
|
col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten() |
|
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift |
|
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids |
|
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids |
|
|
|
pe_shift += max(ref_H_tokens, ref_W_tokens) |
|
pe_shift_len += ref_img_len |
|
|
|
H, W = img_sizes[i] |
|
H_tokens, W_tokens = H // p, W // p |
|
assert H_tokens * W_tokens == l_effective_img_len[i] |
|
|
|
row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten() |
|
col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten() |
|
|
|
assert pe_shift_len + l_effective_img_len[i] == seq_len |
|
position_ids[i, pe_shift_len: seq_len, 0] = pe_shift |
|
position_ids[i, pe_shift_len: seq_len, 1] = row_ids |
|
position_ids[i, pe_shift_len: seq_len, 2] = col_ids |
|
|
|
|
|
freqs_cis = self._get_freqs_cis(freqs_cis, position_ids) |
|
|
|
|
|
cap_freqs_cis = torch.zeros( |
|
batch_size, encoder_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype |
|
) |
|
ref_img_freqs_cis = torch.zeros( |
|
batch_size, max_ref_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype |
|
) |
|
img_freqs_cis = torch.zeros( |
|
batch_size, max_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype |
|
) |
|
|
|
for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)): |
|
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len] |
|
ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)] |
|
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len] |
|
|
|
return ( |
|
cap_freqs_cis, |
|
ref_img_freqs_cis, |
|
img_freqs_cis, |
|
freqs_cis, |
|
l_effective_cap_len, |
|
seq_lengths, |
|
) |
|
|
|
|
|
class LuminaRMSNormZero(nn.Module): |
|
""" |
|
Norm layer adaptive RMS normalization zero. |
|
|
|
Parameters: |
|
embedding_dim (`int`): The size of each embedding vector. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
norm_eps: float, |
|
norm_elementwise_affine: bool, |
|
): |
|
super().__init__() |
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear( |
|
min(embedding_dim, 1024), |
|
4 * embedding_dim, |
|
bias=True, |
|
) |
|
self.norm = RMSNorm(embedding_dim, eps=norm_eps) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
emb: Optional[torch.Tensor] = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
emb = self.linear(self.silu(emb)) |
|
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) |
|
x = self.norm(x) * (1 + scale_msa[:, None]) |
|
return x, gate_msa, scale_mlp, gate_mlp |
|
|
|
|
|
class LuminaLayerNormContinuous(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
conditioning_embedding_dim: int, |
|
|
|
|
|
|
|
|
|
|
|
elementwise_affine=True, |
|
eps=1e-5, |
|
bias=True, |
|
norm_type="layer_norm", |
|
out_dim: Optional[int] = None, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.silu = nn.SiLU() |
|
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) |
|
|
|
if norm_type == "layer_norm": |
|
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias) |
|
elif norm_type == "rms_norm": |
|
self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine) |
|
else: |
|
raise ValueError(f"unknown norm_type {norm_type}") |
|
|
|
self.linear_2 = None |
|
if out_dim is not None: |
|
self.linear_2 = nn.Linear(embedding_dim, out_dim, bias=bias) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
conditioning_embedding: torch.Tensor, |
|
) -> torch.Tensor: |
|
|
|
emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) |
|
scale = emb |
|
x = self.norm(x) * (1 + scale)[:, None, :] |
|
|
|
if self.linear_2 is not None: |
|
x = self.linear_2(x) |
|
|
|
return x |
|
|
|
|
|
class LuminaFeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
hidden_size (`int`): |
|
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's |
|
hidden representations. |
|
intermediate_size (`int`): The intermediate dimension of the feedforward layer. |
|
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple |
|
of this value. |
|
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden |
|
dimension. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
inner_dim: int, |
|
multiple_of: Optional[int] = 256, |
|
ffn_dim_multiplier: Optional[float] = None, |
|
): |
|
super().__init__() |
|
|
|
self.swiglu = swiglu |
|
|
|
|
|
if ffn_dim_multiplier is not None: |
|
inner_dim = int(ffn_dim_multiplier * inner_dim) |
|
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of) |
|
|
|
self.linear_1 = nn.Linear( |
|
dim, |
|
inner_dim, |
|
bias=False, |
|
) |
|
self.linear_2 = nn.Linear( |
|
inner_dim, |
|
dim, |
|
bias=False, |
|
) |
|
self.linear_3 = nn.Linear( |
|
dim, |
|
inner_dim, |
|
bias=False, |
|
) |
|
|
|
def forward(self, x): |
|
h1, h2 = self.linear_1(x), self.linear_3(x) |
|
return self.linear_2(self.swiglu(h1, h2)) |
|
|
|
|
|
class Lumina2CombinedTimestepCaptionEmbedding(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int = 4096, |
|
text_feat_dim: int = 2048, |
|
frequency_embedding_size: int = 256, |
|
norm_eps: float = 1e-5, |
|
timestep_scale: float = 1.0, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.time_proj = Timesteps( |
|
num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=timestep_scale |
|
) |
|
|
|
self.timestep_embedder = TimestepEmbedding( |
|
in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024) |
|
) |
|
|
|
self.caption_embedder = nn.Sequential( |
|
RMSNorm(text_feat_dim, eps=norm_eps), |
|
nn.Linear(text_feat_dim, hidden_size, bias=True), |
|
) |
|
|
|
self._initialize_weights() |
|
|
|
def _initialize_weights(self): |
|
nn.init.trunc_normal_(self.caption_embedder[1].weight, std=0.02) |
|
nn.init.zeros_(self.caption_embedder[1].bias) |
|
|
|
def forward( |
|
self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
timestep_proj = self.time_proj(timestep).to(dtype=dtype) |
|
time_embed = self.timestep_embedder(timestep_proj) |
|
caption_embed = self.caption_embedder(text_hidden_states) |
|
return time_embed, caption_embed |
|
|
|
|
|
class OmniGen2AttnProcessor: |
|
""" |
|
Processor for implementing scaled dot-product attention. |
|
|
|
This processor is optimized for PyTorch 2.0 and implements: |
|
- Flash attention with variable length sequences |
|
- Rotary position embeddings (RoPE) |
|
- Query-Key normalization |
|
- Proportional attention scaling |
|
|
|
Args: |
|
None |
|
|
|
Raises: |
|
ImportError: If PyTorch version is less than 2.0 |
|
""" |
|
|
|
def __init__(self) -> None: |
|
"""Initialize the attention processor.""" |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError( |
|
"OmniGen2AttnProcessorFlash2Varlen requires PyTorch 2.0. " |
|
"Please upgrade PyTorch to version 2.0 or later." |
|
) |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
base_sequence_length: Optional[int] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Process attention computation with flash attention. |
|
|
|
Args: |
|
attn: Attention module |
|
hidden_states: Hidden states tensor of shape (batch_size, seq_len, hidden_dim) |
|
encoder_hidden_states: Encoder hidden states tensor |
|
attention_mask: Optional attention mask tensor |
|
image_rotary_emb: Optional rotary embeddings for image tokens |
|
base_sequence_length: Optional base sequence length for proportional attention |
|
|
|
Returns: |
|
torch.Tensor: Processed hidden states after attention computation |
|
""" |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
query_dim = query.shape[-1] |
|
inner_dim = key.shape[-1] |
|
head_dim = query_dim // attn.heads |
|
dtype = query.dtype |
|
|
|
|
|
kv_heads = inner_dim // head_dim |
|
|
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim) |
|
key = key.view(batch_size, -1, kv_heads, head_dim) |
|
value = value.view(batch_size, -1, kv_heads, head_dim) |
|
|
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if image_rotary_emb is not None: |
|
query = apply_rotary_emb(query, image_rotary_emb, use_real=False) |
|
key = apply_rotary_emb(key, image_rotary_emb, use_real=False) |
|
|
|
query, key = query.to(dtype), key.to(dtype) |
|
|
|
|
|
if base_sequence_length is not None: |
|
softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale |
|
else: |
|
softmax_scale = attn.scale |
|
|
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1) |
|
|
|
query = query.transpose(1, 2) |
|
key = key.transpose(1, 2) |
|
value = value.transpose(1, 2) |
|
|
|
|
|
key = key.repeat_interleave(query.size(-3) // key.size(-3), -3) |
|
value = value.repeat_interleave(query.size(-3) // value.size(-3), -3) |
|
|
|
hidden_states = F.scaled_dot_product_attention( |
|
query, key, value, attn_mask=attention_mask, scale=softmax_scale |
|
) |
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.type_as(query) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
hidden_states = attn.to_out[1](hidden_states) |
|
|
|
return hidden_states |
|
|
|
class OmniGen2TransformerBlock(nn.Module): |
|
""" |
|
Transformer block for OmniGen2 model. |
|
|
|
This block implements a transformer layer with: |
|
- Multi-head attention with flash attention |
|
- Feed-forward network with SwiGLU activation |
|
- RMS normalization |
|
- Optional modulation for conditional generation |
|
|
|
Args: |
|
dim: Dimension of the input and output tensors |
|
num_attention_heads: Number of attention heads |
|
num_kv_heads: Number of key-value heads |
|
multiple_of: Multiple of which the hidden dimension should be |
|
ffn_dim_multiplier: Multiplier for the feed-forward network dimension |
|
norm_eps: Epsilon value for normalization layers |
|
modulation: Whether to use modulation for conditional generation |
|
use_fused_rms_norm: Whether to use fused RMS normalization |
|
use_fused_swiglu: Whether to use fused SwiGLU activation |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
num_kv_heads: int, |
|
multiple_of: int, |
|
ffn_dim_multiplier: float, |
|
norm_eps: float, |
|
modulation: bool = True, |
|
) -> None: |
|
"""Initialize the transformer block.""" |
|
super().__init__() |
|
self.head_dim = dim // num_attention_heads |
|
self.modulation = modulation |
|
|
|
|
|
self.attn = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
dim_head=dim // num_attention_heads, |
|
qk_norm="rms_norm", |
|
heads=num_attention_heads, |
|
kv_heads=num_kv_heads, |
|
eps=1e-5, |
|
bias=False, |
|
out_bias=False, |
|
processor=OmniGen2AttnProcessor(), |
|
) |
|
|
|
|
|
self.feed_forward = LuminaFeedForward( |
|
dim=dim, |
|
inner_dim=4 * dim, |
|
multiple_of=multiple_of, |
|
ffn_dim_multiplier=ffn_dim_multiplier, |
|
) |
|
|
|
|
|
if modulation: |
|
self.norm1 = LuminaRMSNormZero( |
|
embedding_dim=dim, |
|
norm_eps=norm_eps, |
|
norm_elementwise_affine=True, |
|
) |
|
else: |
|
self.norm1 = RMSNorm(dim, eps=norm_eps) |
|
|
|
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps) |
|
self.norm2 = RMSNorm(dim, eps=norm_eps) |
|
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps) |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self) -> None: |
|
""" |
|
Initialize the weights of the transformer block. |
|
|
|
Uses Xavier uniform initialization for linear layers and zero initialization for biases. |
|
""" |
|
nn.init.xavier_uniform_(self.attn.to_q.weight) |
|
nn.init.xavier_uniform_(self.attn.to_k.weight) |
|
nn.init.xavier_uniform_(self.attn.to_v.weight) |
|
nn.init.xavier_uniform_(self.attn.to_out[0].weight) |
|
|
|
nn.init.xavier_uniform_(self.feed_forward.linear_1.weight) |
|
nn.init.xavier_uniform_(self.feed_forward.linear_2.weight) |
|
nn.init.xavier_uniform_(self.feed_forward.linear_3.weight) |
|
|
|
if self.modulation: |
|
nn.init.zeros_(self.norm1.linear.weight) |
|
nn.init.zeros_(self.norm1.linear.bias) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
image_rotary_emb: torch.Tensor, |
|
temb: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
Forward pass of the transformer block. |
|
|
|
Args: |
|
hidden_states: Input hidden states tensor |
|
attention_mask: Attention mask tensor |
|
image_rotary_emb: Rotary embeddings for image tokens |
|
temb: Optional timestep embedding tensor |
|
|
|
Returns: |
|
torch.Tensor: Output hidden states after transformer block processing |
|
""" |
|
if self.modulation: |
|
if temb is None: |
|
raise ValueError("temb must be provided when modulation is enabled") |
|
|
|
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) |
|
attn_output = self.attn( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_hidden_states, |
|
attention_mask=attention_mask, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output) |
|
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) |
|
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
attn_output = self.attn( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_hidden_states, |
|
attention_mask=attention_mask, |
|
image_rotary_emb=image_rotary_emb, |
|
) |
|
hidden_states = hidden_states + self.norm2(attn_output) |
|
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states)) |
|
hidden_states = hidden_states + self.ffn_norm2(mlp_output) |
|
|
|
return hidden_states |
|
|
|
|
|
class OmniGen2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): |
|
""" |
|
OmniGen2 Transformer 2D Model. |
|
|
|
A transformer-based diffusion model for image generation with: |
|
- Patch-based image processing |
|
- Rotary position embeddings |
|
- Multi-head attention |
|
- Conditional generation support |
|
|
|
Args: |
|
patch_size: Size of image patches |
|
in_channels: Number of input channels |
|
out_channels: Number of output channels (defaults to in_channels) |
|
hidden_size: Size of hidden layers |
|
num_layers: Number of transformer layers |
|
num_refiner_layers: Number of refiner layers |
|
num_attention_heads: Number of attention heads |
|
num_kv_heads: Number of key-value heads |
|
multiple_of: Multiple of which the hidden dimension should be |
|
ffn_dim_multiplier: Multiplier for feed-forward network dimension |
|
norm_eps: Epsilon value for normalization layers |
|
axes_dim_rope: Dimensions for rotary position embeddings |
|
axes_lens: Lengths for rotary position embeddings |
|
text_feat_dim: Dimension of text features |
|
timestep_scale: Scale factor for timestep embeddings |
|
use_fused_rms_norm: Whether to use fused RMS normalization |
|
use_fused_swiglu: Whether to use fused SwiGLU activation |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
_no_split_modules = ["Omnigen2TransformerBlock"] |
|
_skip_layerwise_casting_patterns = ["x_embedder", "norm"] |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
patch_size: int = 2, |
|
in_channels: int = 16, |
|
out_channels: Optional[int] = None, |
|
hidden_size: int = 2304, |
|
num_layers: int = 26, |
|
num_refiner_layers: int = 2, |
|
num_attention_heads: int = 24, |
|
num_kv_heads: int = 8, |
|
multiple_of: int = 256, |
|
ffn_dim_multiplier: Optional[float] = None, |
|
norm_eps: float = 1e-5, |
|
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32), |
|
axes_lens: Tuple[int, int, int] = (300, 512, 512), |
|
text_feat_dim: int = 1024, |
|
timestep_scale: float = 1.0, |
|
) -> None: |
|
"""Initialize the OmniGen2 transformer model.""" |
|
super().__init__() |
|
|
|
|
|
if (hidden_size // num_attention_heads) != sum(axes_dim_rope): |
|
raise ValueError( |
|
f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) " |
|
f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})" |
|
) |
|
|
|
self.out_channels = out_channels or in_channels |
|
|
|
|
|
self.rope_embedder = OmniGen2RotaryPosEmbed( |
|
theta=10000, |
|
axes_dim=axes_dim_rope, |
|
axes_lens=axes_lens, |
|
patch_size=patch_size, |
|
) |
|
|
|
self.x_embedder = nn.Linear( |
|
in_features=patch_size * patch_size * in_channels, |
|
out_features=hidden_size, |
|
) |
|
|
|
self.ref_image_patch_embedder = nn.Linear( |
|
in_features=patch_size * patch_size * in_channels, |
|
out_features=hidden_size, |
|
) |
|
|
|
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding( |
|
hidden_size=hidden_size, |
|
text_feat_dim=text_feat_dim, |
|
norm_eps=norm_eps, |
|
timestep_scale=timestep_scale, |
|
) |
|
|
|
|
|
self.noise_refiner = nn.ModuleList([ |
|
OmniGen2TransformerBlock( |
|
hidden_size, |
|
num_attention_heads, |
|
num_kv_heads, |
|
multiple_of, |
|
ffn_dim_multiplier, |
|
norm_eps, |
|
modulation=True, |
|
) |
|
for _ in range(num_refiner_layers) |
|
]) |
|
|
|
self.ref_image_refiner = nn.ModuleList([ |
|
OmniGen2TransformerBlock( |
|
hidden_size, |
|
num_attention_heads, |
|
num_kv_heads, |
|
multiple_of, |
|
ffn_dim_multiplier, |
|
norm_eps, |
|
modulation=True, |
|
) |
|
for _ in range(num_refiner_layers) |
|
]) |
|
|
|
self.context_refiner = nn.ModuleList( |
|
[ |
|
OmniGen2TransformerBlock( |
|
hidden_size, |
|
num_attention_heads, |
|
num_kv_heads, |
|
multiple_of, |
|
ffn_dim_multiplier, |
|
norm_eps, |
|
modulation=False, |
|
) |
|
for _ in range(num_refiner_layers) |
|
] |
|
) |
|
|
|
|
|
self.layers = nn.ModuleList( |
|
[ |
|
OmniGen2TransformerBlock( |
|
hidden_size, |
|
num_attention_heads, |
|
num_kv_heads, |
|
multiple_of, |
|
ffn_dim_multiplier, |
|
norm_eps, |
|
modulation=True, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
self.norm_out = LuminaLayerNormContinuous( |
|
embedding_dim=hidden_size, |
|
conditioning_embedding_dim=min(hidden_size, 1024), |
|
elementwise_affine=False, |
|
eps=1e-6, |
|
bias=True, |
|
out_dim=patch_size * patch_size * self.out_channels, |
|
) |
|
|
|
|
|
self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.initialize_weights() |
|
|
|
def initialize_weights(self) -> None: |
|
""" |
|
Initialize the weights of the model. |
|
|
|
Uses Xavier uniform initialization for linear layers. |
|
""" |
|
nn.init.xavier_uniform_(self.x_embedder.weight) |
|
nn.init.constant_(self.x_embedder.bias, 0.0) |
|
|
|
nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight) |
|
nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0) |
|
|
|
nn.init.zeros_(self.norm_out.linear_1.weight) |
|
nn.init.zeros_(self.norm_out.linear_1.bias) |
|
nn.init.zeros_(self.norm_out.linear_2.weight) |
|
nn.init.zeros_(self.norm_out.linear_2.bias) |
|
|
|
nn.init.normal_(self.image_index_embedding, std=0.02) |
|
|
|
def img_patch_embed_and_refine( |
|
self, |
|
hidden_states, |
|
ref_image_hidden_states, |
|
padded_img_mask, |
|
padded_ref_img_mask, |
|
noise_rotary_emb, |
|
ref_img_rotary_emb, |
|
l_effective_ref_img_len, |
|
l_effective_img_len, |
|
temb |
|
): |
|
batch_size = len(hidden_states) |
|
max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)]) |
|
|
|
hidden_states = self.x_embedder(hidden_states) |
|
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states) |
|
|
|
for i in range(batch_size): |
|
shift = 0 |
|
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]): |
|
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j] |
|
shift += ref_img_len |
|
|
|
for layer in self.noise_refiner: |
|
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb) |
|
|
|
flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len)) |
|
num_ref_images = len(flat_l_effective_ref_img_len) |
|
max_ref_img_len = max(flat_l_effective_ref_img_len) |
|
|
|
batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool) |
|
batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size) |
|
batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype) |
|
batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype) |
|
|
|
|
|
idx = 0 |
|
for i in range(batch_size): |
|
shift = 0 |
|
for ref_img_len in l_effective_ref_img_len[i]: |
|
batch_ref_img_mask[idx, :ref_img_len] = True |
|
batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len] |
|
batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len] |
|
batch_temb[idx] = temb[i] |
|
shift += ref_img_len |
|
idx += 1 |
|
|
|
|
|
for layer in self.ref_image_refiner: |
|
batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb) |
|
|
|
|
|
idx = 0 |
|
for i in range(batch_size): |
|
shift = 0 |
|
for ref_img_len in l_effective_ref_img_len[i]: |
|
ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len] |
|
shift += ref_img_len |
|
idx += 1 |
|
|
|
combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size) |
|
for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)): |
|
combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)] |
|
combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len] |
|
|
|
return combined_img_hidden_states |
|
|
|
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states): |
|
batch_size = len(hidden_states) |
|
p = self.config.patch_size |
|
device = hidden_states[0].device |
|
|
|
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states] |
|
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes] |
|
|
|
if ref_image_hidden_states is not None: |
|
ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states] |
|
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes] |
|
else: |
|
ref_img_sizes = [None for _ in range(batch_size)] |
|
l_effective_ref_img_len = [[0] for _ in range(batch_size)] |
|
|
|
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len]) |
|
max_img_len = max(l_effective_img_len) |
|
|
|
|
|
flat_ref_img_hidden_states = [] |
|
for i in range(batch_size): |
|
if ref_img_sizes[i] is not None: |
|
imgs = [] |
|
for ref_img in ref_image_hidden_states[i]: |
|
C, H, W = ref_img.size() |
|
ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) |
|
imgs.append(ref_img) |
|
|
|
img = torch.cat(imgs, dim=0) |
|
flat_ref_img_hidden_states.append(img) |
|
else: |
|
flat_ref_img_hidden_states.append(None) |
|
|
|
|
|
flat_hidden_states = [] |
|
for i in range(batch_size): |
|
img = hidden_states[i] |
|
C, H, W = img.size() |
|
|
|
img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p) |
|
flat_hidden_states.append(img) |
|
|
|
padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) |
|
padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device) |
|
for i in range(batch_size): |
|
if ref_img_sizes[i] is not None: |
|
padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i] |
|
padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True |
|
|
|
padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype) |
|
padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device) |
|
for i in range(batch_size): |
|
padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i] |
|
padded_img_mask[i, :l_effective_img_len[i]] = True |
|
|
|
return ( |
|
padded_hidden_states, |
|
padded_ref_img_hidden_states, |
|
padded_img_mask, |
|
padded_ref_img_mask, |
|
l_effective_ref_img_len, |
|
l_effective_img_len, |
|
ref_img_sizes, |
|
img_sizes, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: Union[torch.Tensor, List[torch.Tensor]], |
|
timestep: torch.Tensor, |
|
text_hidden_states: torch.Tensor, |
|
freqs_cis: torch.Tensor, |
|
text_attention_mask: torch.Tensor, |
|
ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None, |
|
attention_kwargs: Optional[Dict[str, Any]] = None, |
|
return_dict: bool = False, |
|
) -> Union[torch.Tensor, Transformer2DModelOutput]: |
|
if attention_kwargs is not None: |
|
attention_kwargs = attention_kwargs.copy() |
|
lora_scale = attention_kwargs.pop("scale", 1.0) |
|
else: |
|
lora_scale = 1.0 |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
scale_lora_layers(self, lora_scale) |
|
else: |
|
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: |
|
logger.warning( |
|
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." |
|
) |
|
|
|
|
|
batch_size = len(hidden_states) |
|
is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor) |
|
|
|
if is_hidden_states_tensor: |
|
assert hidden_states.ndim == 4 |
|
hidden_states = [_hidden_states for _hidden_states in hidden_states] |
|
|
|
device = hidden_states[0].device |
|
|
|
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype) |
|
|
|
( |
|
hidden_states, |
|
ref_image_hidden_states, |
|
img_mask, |
|
ref_img_mask, |
|
l_effective_ref_img_len, |
|
l_effective_img_len, |
|
ref_img_sizes, |
|
img_sizes, |
|
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states) |
|
|
|
( |
|
context_rotary_emb, |
|
ref_img_rotary_emb, |
|
noise_rotary_emb, |
|
rotary_emb, |
|
encoder_seq_lengths, |
|
seq_lengths, |
|
) = self.rope_embedder( |
|
freqs_cis, |
|
text_attention_mask, |
|
l_effective_ref_img_len, |
|
l_effective_img_len, |
|
ref_img_sizes, |
|
img_sizes, |
|
device, |
|
) |
|
|
|
|
|
for layer in self.context_refiner: |
|
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb) |
|
|
|
combined_img_hidden_states = self.img_patch_embed_and_refine( |
|
hidden_states, |
|
ref_image_hidden_states, |
|
img_mask, |
|
ref_img_mask, |
|
noise_rotary_emb, |
|
ref_img_rotary_emb, |
|
l_effective_ref_img_len, |
|
l_effective_img_len, |
|
temb, |
|
) |
|
|
|
|
|
max_seq_len = max(seq_lengths) |
|
|
|
attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool) |
|
joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size) |
|
for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)): |
|
attention_mask[i, :seq_len] = True |
|
joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[i, :encoder_seq_len] |
|
joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len] |
|
|
|
hidden_states = joint_hidden_states |
|
|
|
for layer_idx, layer in enumerate(self.layers): |
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
hidden_states = self._gradient_checkpointing_func( |
|
layer, hidden_states, attention_mask, rotary_emb, temb |
|
) |
|
else: |
|
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb) |
|
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
|
|
p = self.config.patch_size |
|
output = [] |
|
for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)): |
|
height, width = img_size |
|
output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p)) |
|
if is_hidden_states_tensor: |
|
output = torch.stack(output, dim=0) |
|
|
|
if USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(self, lora_scale) |
|
|
|
if not return_dict: |
|
return output |
|
return Transformer2DModelOutput(sample=output) |
|
|