Upload folder using huggingface_hub
Browse files
transformer/.ipynb_checkpoints/config-checkpoint.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "OmniGen2Transformer2DModel",
|
3 |
+
"_diffusers_version": "0.33.1",
|
4 |
+
"axes_dim_rope": [
|
5 |
+
40,
|
6 |
+
40,
|
7 |
+
40
|
8 |
+
],
|
9 |
+
"axes_lens": [
|
10 |
+
1024,
|
11 |
+
1664,
|
12 |
+
1664
|
13 |
+
],
|
14 |
+
"ffn_dim_multiplier": null,
|
15 |
+
"hidden_size": 2520,
|
16 |
+
"in_channels": 16,
|
17 |
+
"multiple_of": 256,
|
18 |
+
"norm_eps": 1e-05,
|
19 |
+
"num_attention_heads": 21,
|
20 |
+
"num_kv_heads": 7,
|
21 |
+
"num_layers": 32,
|
22 |
+
"num_refiner_layers": 2,
|
23 |
+
"out_channels": null,
|
24 |
+
"patch_size": 2,
|
25 |
+
"text_feat_dim": 2048,
|
26 |
+
"timestep_scale": 1000.0
|
27 |
+
}
|
transformer/config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "OmniGen2Transformer2DModel",
|
3 |
+
"_diffusers_version": "0.33.1",
|
4 |
+
"axes_dim_rope": [
|
5 |
+
40,
|
6 |
+
40,
|
7 |
+
40
|
8 |
+
],
|
9 |
+
"axes_lens": [
|
10 |
+
1024,
|
11 |
+
1664,
|
12 |
+
1664
|
13 |
+
],
|
14 |
+
"ffn_dim_multiplier": null,
|
15 |
+
"hidden_size": 2520,
|
16 |
+
"in_channels": 16,
|
17 |
+
"multiple_of": 256,
|
18 |
+
"norm_eps": 1e-05,
|
19 |
+
"num_attention_heads": 21,
|
20 |
+
"num_kv_heads": 7,
|
21 |
+
"num_layers": 32,
|
22 |
+
"num_refiner_layers": 2,
|
23 |
+
"out_channels": null,
|
24 |
+
"patch_size": 2,
|
25 |
+
"text_feat_dim": 2048,
|
26 |
+
"timestep_scale": 1000.0
|
27 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06d0dc5cd21197b5fedfd3e3a2b0a4dd49048bc165944076b3107adb00a42bbf
|
3 |
+
size 7798909776
|
transformer/transformer_omnigen2.py
ADDED
@@ -0,0 +1,2104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import itertools
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
|
12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
13 |
+
from diffusers.loaders import PeftAdapterMixin
|
14 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
15 |
+
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
16 |
+
from diffusers.models.attention_processor import Attention
|
17 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
18 |
+
from diffusers.models.modeling_utils import ModelMixin
|
19 |
+
from diffusers.models.embeddings import get_1d_rotary_pos_embed
|
20 |
+
from diffusers.models.activations import get_activation
|
21 |
+
from diffusers.models.embeddings import Timesteps
|
22 |
+
|
23 |
+
import importlib.util
|
24 |
+
import sys
|
25 |
+
|
26 |
+
# The package importlib_metadata is in a different place, depending on the python version.
|
27 |
+
if sys.version_info < (3, 8):
|
28 |
+
import importlib_metadata
|
29 |
+
else:
|
30 |
+
import importlib.metadata as importlib_metadata
|
31 |
+
|
32 |
+
def _is_package_available(pkg_name: str):
|
33 |
+
pkg_exists = importlib.util.find_spec(pkg_name) is not None
|
34 |
+
pkg_version = "N/A"
|
35 |
+
|
36 |
+
if pkg_exists:
|
37 |
+
try:
|
38 |
+
pkg_version = importlib_metadata.version(pkg_name)
|
39 |
+
except (ImportError, importlib_metadata.PackageNotFoundError):
|
40 |
+
pkg_exists = False
|
41 |
+
|
42 |
+
return pkg_exists, pkg_version
|
43 |
+
|
44 |
+
_triton_available, _triton_version = _is_package_available("triton")
|
45 |
+
_flash_attn_available, _flash_attn_version = _is_package_available("flash_attn")
|
46 |
+
|
47 |
+
def is_triton_available():
|
48 |
+
return _triton_available
|
49 |
+
|
50 |
+
def is_flash_attn_available():
|
51 |
+
return _flash_attn_available
|
52 |
+
|
53 |
+
if is_triton_available():
|
54 |
+
# from ...ops.triton.layer_norm import RMSNorm
|
55 |
+
import triton
|
56 |
+
import triton.language as tl
|
57 |
+
|
58 |
+
|
59 |
+
from typing import Callable
|
60 |
+
|
61 |
+
|
62 |
+
def custom_amp_decorator(dec: Callable, cuda_amp_deprecated: bool):
|
63 |
+
def decorator(*args, **kwargs):
|
64 |
+
if cuda_amp_deprecated:
|
65 |
+
kwargs["device_type"] = "cuda"
|
66 |
+
return dec(*args, **kwargs)
|
67 |
+
return decorator
|
68 |
+
|
69 |
+
|
70 |
+
if hasattr(torch.amp, "custom_fwd"): # type: ignore[attr-defined]
|
71 |
+
deprecated = True
|
72 |
+
from torch.amp import custom_fwd, custom_bwd # type: ignore[attr-defined]
|
73 |
+
else:
|
74 |
+
deprecated = False
|
75 |
+
from torch.cuda.amp import custom_fwd, custom_bwd
|
76 |
+
|
77 |
+
custom_fwd = custom_amp_decorator(custom_fwd, deprecated)
|
78 |
+
custom_bwd = custom_amp_decorator(custom_bwd, deprecated)
|
79 |
+
|
80 |
+
|
81 |
+
def triton_autotune_configs():
|
82 |
+
# Return configs with a valid warp count for the current device
|
83 |
+
configs=[]
|
84 |
+
# Maximum threads per block is architecture-dependent in theory, but in reality all are 1024
|
85 |
+
max_threads_per_block=1024
|
86 |
+
# Default to warp size 32 if not defined by device
|
87 |
+
warp_size=getattr(torch.cuda.get_device_properties(torch.cuda.current_device()), "warp_size", 32)
|
88 |
+
# Autotune for warp counts which are powers of 2 and do not exceed thread per block limit
|
89 |
+
warp_count=1
|
90 |
+
while warp_count*warp_size <= max_threads_per_block:
|
91 |
+
configs.append(triton.Config({}, num_warps=warp_count))
|
92 |
+
warp_count*=2
|
93 |
+
return configs
|
94 |
+
|
95 |
+
@triton.autotune(
|
96 |
+
configs=triton_autotune_configs(),
|
97 |
+
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
98 |
+
)
|
99 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
100 |
+
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
101 |
+
@triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
102 |
+
@triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
103 |
+
@triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
104 |
+
@triton.jit
|
105 |
+
def _layer_norm_fwd_1pass_kernel(
|
106 |
+
X, # pointer to the input
|
107 |
+
Y, # pointer to the output
|
108 |
+
W, # pointer to the weights
|
109 |
+
B, # pointer to the biases
|
110 |
+
RESIDUAL, # pointer to the residual
|
111 |
+
X1,
|
112 |
+
W1,
|
113 |
+
B1,
|
114 |
+
Y1,
|
115 |
+
RESIDUAL_OUT, # pointer to the residual
|
116 |
+
ROWSCALE,
|
117 |
+
SEEDS, # Dropout seeds for each row
|
118 |
+
DROPOUT_MASK,
|
119 |
+
Mean, # pointer to the mean
|
120 |
+
Rstd, # pointer to the 1/std
|
121 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
122 |
+
stride_y_row,
|
123 |
+
stride_res_row,
|
124 |
+
stride_res_out_row,
|
125 |
+
stride_x1_row,
|
126 |
+
stride_y1_row,
|
127 |
+
M, # number of rows in X
|
128 |
+
N, # number of columns in X
|
129 |
+
eps, # epsilon to avoid division by zero
|
130 |
+
dropout_p, # Dropout probability
|
131 |
+
zero_centered_weight, # If true, add 1.0 to the weight
|
132 |
+
IS_RMS_NORM: tl.constexpr,
|
133 |
+
BLOCK_N: tl.constexpr,
|
134 |
+
HAS_RESIDUAL: tl.constexpr,
|
135 |
+
STORE_RESIDUAL_OUT: tl.constexpr,
|
136 |
+
HAS_BIAS: tl.constexpr,
|
137 |
+
HAS_DROPOUT: tl.constexpr,
|
138 |
+
STORE_DROPOUT_MASK: tl.constexpr,
|
139 |
+
HAS_ROWSCALE: tl.constexpr,
|
140 |
+
HAS_X1: tl.constexpr,
|
141 |
+
HAS_W1: tl.constexpr,
|
142 |
+
HAS_B1: tl.constexpr,
|
143 |
+
):
|
144 |
+
# Map the program id to the row of X and Y it should compute.
|
145 |
+
row = tl.program_id(0)
|
146 |
+
X += row * stride_x_row
|
147 |
+
Y += row * stride_y_row
|
148 |
+
if HAS_RESIDUAL:
|
149 |
+
RESIDUAL += row * stride_res_row
|
150 |
+
if STORE_RESIDUAL_OUT:
|
151 |
+
RESIDUAL_OUT += row * stride_res_out_row
|
152 |
+
if HAS_X1:
|
153 |
+
X1 += row * stride_x1_row
|
154 |
+
if HAS_W1:
|
155 |
+
Y1 += row * stride_y1_row
|
156 |
+
# Compute mean and variance
|
157 |
+
cols = tl.arange(0, BLOCK_N)
|
158 |
+
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
159 |
+
if HAS_ROWSCALE:
|
160 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
161 |
+
x *= rowscale
|
162 |
+
if HAS_DROPOUT:
|
163 |
+
# Compute dropout mask
|
164 |
+
# 7 rounds is good enough, and reduces register pressure
|
165 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
166 |
+
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
167 |
+
if STORE_DROPOUT_MASK:
|
168 |
+
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
169 |
+
if HAS_X1:
|
170 |
+
x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32)
|
171 |
+
if HAS_ROWSCALE:
|
172 |
+
rowscale = tl.load(ROWSCALE + M + row).to(tl.float32)
|
173 |
+
x1 *= rowscale
|
174 |
+
if HAS_DROPOUT:
|
175 |
+
# Compute dropout mask
|
176 |
+
# 7 rounds is good enough, and reduces register pressure
|
177 |
+
keep_mask = (
|
178 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
179 |
+
)
|
180 |
+
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
181 |
+
if STORE_DROPOUT_MASK:
|
182 |
+
tl.store(DROPOUT_MASK + (M + row) * N + cols, keep_mask, mask=cols < N)
|
183 |
+
x += x1
|
184 |
+
if HAS_RESIDUAL:
|
185 |
+
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
186 |
+
x += residual
|
187 |
+
if STORE_RESIDUAL_OUT:
|
188 |
+
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
189 |
+
if not IS_RMS_NORM:
|
190 |
+
mean = tl.sum(x, axis=0) / N
|
191 |
+
tl.store(Mean + row, mean)
|
192 |
+
xbar = tl.where(cols < N, x - mean, 0.0)
|
193 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
194 |
+
else:
|
195 |
+
xbar = tl.where(cols < N, x, 0.0)
|
196 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
197 |
+
rstd = 1 / tl.sqrt(var + eps)
|
198 |
+
tl.store(Rstd + row, rstd)
|
199 |
+
# Normalize and apply linear transformation
|
200 |
+
mask = cols < N
|
201 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
202 |
+
if zero_centered_weight:
|
203 |
+
w += 1.0
|
204 |
+
if HAS_BIAS:
|
205 |
+
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
206 |
+
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
207 |
+
y = x_hat * w + b if HAS_BIAS else x_hat * w
|
208 |
+
# Write output
|
209 |
+
tl.store(Y + cols, y, mask=mask)
|
210 |
+
if HAS_W1:
|
211 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
212 |
+
if zero_centered_weight:
|
213 |
+
w1 += 1.0
|
214 |
+
if HAS_B1:
|
215 |
+
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
216 |
+
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
217 |
+
tl.store(Y1 + cols, y1, mask=mask)
|
218 |
+
|
219 |
+
|
220 |
+
def _layer_norm_fwd(
|
221 |
+
x,
|
222 |
+
weight,
|
223 |
+
bias,
|
224 |
+
eps,
|
225 |
+
residual=None,
|
226 |
+
x1=None,
|
227 |
+
weight1=None,
|
228 |
+
bias1=None,
|
229 |
+
dropout_p=0.0,
|
230 |
+
rowscale=None,
|
231 |
+
out_dtype=None,
|
232 |
+
residual_dtype=None,
|
233 |
+
zero_centered_weight=False,
|
234 |
+
is_rms_norm=False,
|
235 |
+
return_dropout_mask=False,
|
236 |
+
out=None,
|
237 |
+
residual_out=None
|
238 |
+
):
|
239 |
+
if residual is not None:
|
240 |
+
residual_dtype = residual.dtype
|
241 |
+
M, N = x.shape
|
242 |
+
assert x.stride(-1) == 1
|
243 |
+
if residual is not None:
|
244 |
+
assert residual.stride(-1) == 1
|
245 |
+
assert residual.shape == (M, N)
|
246 |
+
assert weight.shape == (N,)
|
247 |
+
assert weight.stride(-1) == 1
|
248 |
+
if bias is not None:
|
249 |
+
assert bias.stride(-1) == 1
|
250 |
+
assert bias.shape == (N,)
|
251 |
+
if x1 is not None:
|
252 |
+
assert x1.shape == x.shape
|
253 |
+
assert rowscale is None
|
254 |
+
assert x1.stride(-1) == 1
|
255 |
+
if weight1 is not None:
|
256 |
+
assert weight1.shape == (N,)
|
257 |
+
assert weight1.stride(-1) == 1
|
258 |
+
if bias1 is not None:
|
259 |
+
assert bias1.shape == (N,)
|
260 |
+
assert bias1.stride(-1) == 1
|
261 |
+
if rowscale is not None:
|
262 |
+
assert rowscale.is_contiguous()
|
263 |
+
assert rowscale.shape == (M,)
|
264 |
+
# allocate output
|
265 |
+
if out is None:
|
266 |
+
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
267 |
+
else:
|
268 |
+
assert out.shape == x.shape
|
269 |
+
assert out.stride(-1) == 1
|
270 |
+
if weight1 is not None:
|
271 |
+
y1 = torch.empty_like(out)
|
272 |
+
assert y1.stride(-1) == 1
|
273 |
+
else:
|
274 |
+
y1 = None
|
275 |
+
if (
|
276 |
+
residual is not None
|
277 |
+
or (residual_dtype is not None and residual_dtype != x.dtype)
|
278 |
+
or dropout_p > 0.0
|
279 |
+
or rowscale is not None
|
280 |
+
or x1 is not None
|
281 |
+
):
|
282 |
+
if residual_out is None:
|
283 |
+
residual_out = torch.empty(
|
284 |
+
M, N, device=x.device, dtype=residual_dtype if residual_dtype is not None else x.dtype
|
285 |
+
)
|
286 |
+
else:
|
287 |
+
assert residual_out.shape == x.shape
|
288 |
+
assert residual_out.stride(-1) == 1
|
289 |
+
else:
|
290 |
+
residual_out = None
|
291 |
+
mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
|
292 |
+
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
293 |
+
if dropout_p > 0.0:
|
294 |
+
seeds = torch.randint(
|
295 |
+
2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64
|
296 |
+
)
|
297 |
+
else:
|
298 |
+
seeds = None
|
299 |
+
if return_dropout_mask and dropout_p > 0.0:
|
300 |
+
dropout_mask = torch.empty(M if x1 is None else 2 * M, N, device=x.device, dtype=torch.bool)
|
301 |
+
else:
|
302 |
+
dropout_mask = None
|
303 |
+
# Less than 64KB per feature: enqueue fused kernel
|
304 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
305 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
306 |
+
if N > BLOCK_N:
|
307 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
308 |
+
with torch.cuda.device(x.device.index):
|
309 |
+
_layer_norm_fwd_1pass_kernel[(M,)](
|
310 |
+
x,
|
311 |
+
out,
|
312 |
+
weight,
|
313 |
+
bias,
|
314 |
+
residual,
|
315 |
+
x1,
|
316 |
+
weight1,
|
317 |
+
bias1,
|
318 |
+
y1,
|
319 |
+
residual_out,
|
320 |
+
rowscale,
|
321 |
+
seeds,
|
322 |
+
dropout_mask,
|
323 |
+
mean,
|
324 |
+
rstd,
|
325 |
+
x.stride(0),
|
326 |
+
out.stride(0),
|
327 |
+
residual.stride(0) if residual is not None else 0,
|
328 |
+
residual_out.stride(0) if residual_out is not None else 0,
|
329 |
+
x1.stride(0) if x1 is not None else 0,
|
330 |
+
y1.stride(0) if y1 is not None else 0,
|
331 |
+
M,
|
332 |
+
N,
|
333 |
+
eps,
|
334 |
+
dropout_p,
|
335 |
+
zero_centered_weight,
|
336 |
+
is_rms_norm,
|
337 |
+
BLOCK_N,
|
338 |
+
residual is not None,
|
339 |
+
residual_out is not None,
|
340 |
+
bias is not None,
|
341 |
+
dropout_p > 0.0,
|
342 |
+
dropout_mask is not None,
|
343 |
+
rowscale is not None,
|
344 |
+
)
|
345 |
+
# residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
|
346 |
+
if dropout_mask is not None and x1 is not None:
|
347 |
+
dropout_mask, dropout_mask1 = dropout_mask.tensor_split(2, dim=0)
|
348 |
+
else:
|
349 |
+
dropout_mask1 = None
|
350 |
+
return (
|
351 |
+
out,
|
352 |
+
y1,
|
353 |
+
mean,
|
354 |
+
rstd,
|
355 |
+
residual_out if residual_out is not None else x,
|
356 |
+
seeds,
|
357 |
+
dropout_mask,
|
358 |
+
dropout_mask1,
|
359 |
+
)
|
360 |
+
|
361 |
+
@triton.autotune(
|
362 |
+
configs=triton_autotune_configs(),
|
363 |
+
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"],
|
364 |
+
)
|
365 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
366 |
+
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
367 |
+
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
368 |
+
@triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
369 |
+
@triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
370 |
+
@triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
371 |
+
@triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
372 |
+
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
373 |
+
@triton.jit
|
374 |
+
def _layer_norm_bwd_kernel(
|
375 |
+
X, # pointer to the input
|
376 |
+
W, # pointer to the weights
|
377 |
+
B, # pointer to the biases
|
378 |
+
Y, # pointer to the output to be recomputed
|
379 |
+
DY, # pointer to the output gradient
|
380 |
+
DX, # pointer to the input gradient
|
381 |
+
DW, # pointer to the partial sum of weights gradient
|
382 |
+
DB, # pointer to the partial sum of biases gradient
|
383 |
+
DRESIDUAL,
|
384 |
+
W1,
|
385 |
+
DY1,
|
386 |
+
DX1,
|
387 |
+
DW1,
|
388 |
+
DB1,
|
389 |
+
DRESIDUAL_IN,
|
390 |
+
ROWSCALE,
|
391 |
+
SEEDS,
|
392 |
+
Mean, # pointer to the mean
|
393 |
+
Rstd, # pointer to the 1/std
|
394 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
395 |
+
stride_y_row,
|
396 |
+
stride_dy_row,
|
397 |
+
stride_dx_row,
|
398 |
+
stride_dres_row,
|
399 |
+
stride_dy1_row,
|
400 |
+
stride_dx1_row,
|
401 |
+
stride_dres_in_row,
|
402 |
+
M, # number of rows in X
|
403 |
+
N, # number of columns in X
|
404 |
+
eps, # epsilon to avoid division by zero
|
405 |
+
dropout_p,
|
406 |
+
zero_centered_weight,
|
407 |
+
rows_per_program,
|
408 |
+
IS_RMS_NORM: tl.constexpr,
|
409 |
+
BLOCK_N: tl.constexpr,
|
410 |
+
HAS_DRESIDUAL: tl.constexpr,
|
411 |
+
STORE_DRESIDUAL: tl.constexpr,
|
412 |
+
HAS_BIAS: tl.constexpr,
|
413 |
+
HAS_DROPOUT: tl.constexpr,
|
414 |
+
HAS_ROWSCALE: tl.constexpr,
|
415 |
+
HAS_DY1: tl.constexpr,
|
416 |
+
HAS_DX1: tl.constexpr,
|
417 |
+
HAS_B1: tl.constexpr,
|
418 |
+
RECOMPUTE_OUTPUT: tl.constexpr,
|
419 |
+
):
|
420 |
+
# Map the program id to the elements of X, DX, and DY it should compute.
|
421 |
+
row_block_id = tl.program_id(0)
|
422 |
+
row_start = row_block_id * rows_per_program
|
423 |
+
# Do not early exit if row_start >= M, because we need to write DW and DB
|
424 |
+
cols = tl.arange(0, BLOCK_N)
|
425 |
+
mask = cols < N
|
426 |
+
X += row_start * stride_x_row
|
427 |
+
if HAS_DRESIDUAL:
|
428 |
+
DRESIDUAL += row_start * stride_dres_row
|
429 |
+
if STORE_DRESIDUAL:
|
430 |
+
DRESIDUAL_IN += row_start * stride_dres_in_row
|
431 |
+
DY += row_start * stride_dy_row
|
432 |
+
DX += row_start * stride_dx_row
|
433 |
+
if HAS_DY1:
|
434 |
+
DY1 += row_start * stride_dy1_row
|
435 |
+
if HAS_DX1:
|
436 |
+
DX1 += row_start * stride_dx1_row
|
437 |
+
if RECOMPUTE_OUTPUT:
|
438 |
+
Y += row_start * stride_y_row
|
439 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
440 |
+
if zero_centered_weight:
|
441 |
+
w += 1.0
|
442 |
+
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
443 |
+
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
444 |
+
if HAS_DY1:
|
445 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
446 |
+
if zero_centered_weight:
|
447 |
+
w1 += 1.0
|
448 |
+
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
449 |
+
if HAS_BIAS:
|
450 |
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
451 |
+
if HAS_DY1:
|
452 |
+
dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
453 |
+
if HAS_B1:
|
454 |
+
db1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
455 |
+
row_end = min((row_block_id + 1) * rows_per_program, M)
|
456 |
+
for row in range(row_start, row_end):
|
457 |
+
# Load data to SRAM
|
458 |
+
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
459 |
+
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
460 |
+
if HAS_DY1:
|
461 |
+
dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32)
|
462 |
+
if not IS_RMS_NORM:
|
463 |
+
mean = tl.load(Mean + row)
|
464 |
+
rstd = tl.load(Rstd + row)
|
465 |
+
# Compute dx
|
466 |
+
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
467 |
+
xhat = tl.where(mask, xhat, 0.0)
|
468 |
+
if RECOMPUTE_OUTPUT:
|
469 |
+
y = xhat * w + b if HAS_BIAS else xhat * w
|
470 |
+
tl.store(Y + cols, y, mask=mask)
|
471 |
+
wdy = w * dy
|
472 |
+
dw += dy * xhat
|
473 |
+
if HAS_BIAS:
|
474 |
+
db += dy
|
475 |
+
if HAS_DY1:
|
476 |
+
wdy += w1 * dy1
|
477 |
+
dw1 += dy1 * xhat
|
478 |
+
if HAS_B1:
|
479 |
+
db1 += dy1
|
480 |
+
if not IS_RMS_NORM:
|
481 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
482 |
+
c2 = tl.sum(wdy, axis=0) / N
|
483 |
+
dx = (wdy - (xhat * c1 + c2)) * rstd
|
484 |
+
else:
|
485 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
486 |
+
dx = (wdy - xhat * c1) * rstd
|
487 |
+
if HAS_DRESIDUAL:
|
488 |
+
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
489 |
+
dx += dres
|
490 |
+
# Write dx
|
491 |
+
if STORE_DRESIDUAL:
|
492 |
+
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
493 |
+
if HAS_DX1:
|
494 |
+
if HAS_DROPOUT:
|
495 |
+
keep_mask = (
|
496 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
497 |
+
)
|
498 |
+
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
499 |
+
else:
|
500 |
+
dx1 = dx
|
501 |
+
tl.store(DX1 + cols, dx1, mask=mask)
|
502 |
+
if HAS_DROPOUT:
|
503 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
504 |
+
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
505 |
+
if HAS_ROWSCALE:
|
506 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
507 |
+
dx *= rowscale
|
508 |
+
tl.store(DX + cols, dx, mask=mask)
|
509 |
+
|
510 |
+
X += stride_x_row
|
511 |
+
if HAS_DRESIDUAL:
|
512 |
+
DRESIDUAL += stride_dres_row
|
513 |
+
if STORE_DRESIDUAL:
|
514 |
+
DRESIDUAL_IN += stride_dres_in_row
|
515 |
+
if RECOMPUTE_OUTPUT:
|
516 |
+
Y += stride_y_row
|
517 |
+
DY += stride_dy_row
|
518 |
+
DX += stride_dx_row
|
519 |
+
if HAS_DY1:
|
520 |
+
DY1 += stride_dy1_row
|
521 |
+
if HAS_DX1:
|
522 |
+
DX1 += stride_dx1_row
|
523 |
+
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
524 |
+
if HAS_BIAS:
|
525 |
+
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
526 |
+
if HAS_DY1:
|
527 |
+
tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask)
|
528 |
+
if HAS_B1:
|
529 |
+
tl.store(DB1 + row_block_id * N + cols, db1, mask=mask)
|
530 |
+
|
531 |
+
|
532 |
+
def _layer_norm_bwd(
|
533 |
+
dy,
|
534 |
+
x,
|
535 |
+
weight,
|
536 |
+
bias,
|
537 |
+
eps,
|
538 |
+
mean,
|
539 |
+
rstd,
|
540 |
+
dresidual=None,
|
541 |
+
dy1=None,
|
542 |
+
weight1=None,
|
543 |
+
bias1=None,
|
544 |
+
seeds=None,
|
545 |
+
dropout_p=0.0,
|
546 |
+
rowscale=None,
|
547 |
+
has_residual=False,
|
548 |
+
has_x1=False,
|
549 |
+
zero_centered_weight=False,
|
550 |
+
is_rms_norm=False,
|
551 |
+
x_dtype=None,
|
552 |
+
recompute_output=False,
|
553 |
+
):
|
554 |
+
M, N = x.shape
|
555 |
+
assert x.stride(-1) == 1
|
556 |
+
assert dy.stride(-1) == 1
|
557 |
+
assert dy.shape == (M, N)
|
558 |
+
if dresidual is not None:
|
559 |
+
assert dresidual.stride(-1) == 1
|
560 |
+
assert dresidual.shape == (M, N)
|
561 |
+
assert weight.shape == (N,)
|
562 |
+
assert weight.stride(-1) == 1
|
563 |
+
if bias is not None:
|
564 |
+
assert bias.stride(-1) == 1
|
565 |
+
assert bias.shape == (N,)
|
566 |
+
if dy1 is not None:
|
567 |
+
assert weight1 is not None
|
568 |
+
assert dy1.shape == dy.shape
|
569 |
+
assert dy1.stride(-1) == 1
|
570 |
+
if weight1 is not None:
|
571 |
+
assert weight1.shape == (N,)
|
572 |
+
assert weight1.stride(-1) == 1
|
573 |
+
if bias1 is not None:
|
574 |
+
assert bias1.shape == (N,)
|
575 |
+
assert bias1.stride(-1) == 1
|
576 |
+
if seeds is not None:
|
577 |
+
assert seeds.is_contiguous()
|
578 |
+
assert seeds.shape == (M if not has_x1 else M * 2,)
|
579 |
+
if rowscale is not None:
|
580 |
+
assert rowscale.is_contiguous()
|
581 |
+
assert rowscale.shape == (M,)
|
582 |
+
# allocate output
|
583 |
+
dx = (
|
584 |
+
torch.empty_like(x)
|
585 |
+
if x_dtype is None
|
586 |
+
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
587 |
+
)
|
588 |
+
dresidual_in = (
|
589 |
+
torch.empty_like(x)
|
590 |
+
if has_residual
|
591 |
+
and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1)
|
592 |
+
else None
|
593 |
+
)
|
594 |
+
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
595 |
+
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
|
596 |
+
if recompute_output:
|
597 |
+
assert weight1 is None, "recompute_output is not supported with parallel LayerNorm"
|
598 |
+
|
599 |
+
# Less than 64KB per feature: enqueue fused kernel
|
600 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
601 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
602 |
+
if N > BLOCK_N:
|
603 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
604 |
+
# Increasing the multiple (e.g. 8) will allow more thread blocks to be launched and hide the
|
605 |
+
# latency of the gmem reads/writes, but will increase the time of summing up dw / db.
|
606 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count * 8
|
607 |
+
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
608 |
+
_db = (
|
609 |
+
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
610 |
+
if bias is not None
|
611 |
+
else None
|
612 |
+
)
|
613 |
+
_dw1 = torch.empty_like(_dw) if weight1 is not None else None
|
614 |
+
_db1 = torch.empty_like(_db) if bias1 is not None else None
|
615 |
+
rows_per_program = math.ceil(M / sm_count)
|
616 |
+
grid = (sm_count,)
|
617 |
+
with torch.cuda.device(x.device.index):
|
618 |
+
_layer_norm_bwd_kernel[grid](
|
619 |
+
x,
|
620 |
+
weight,
|
621 |
+
bias,
|
622 |
+
y,
|
623 |
+
dy,
|
624 |
+
dx,
|
625 |
+
_dw,
|
626 |
+
_db,
|
627 |
+
dresidual,
|
628 |
+
weight1,
|
629 |
+
dy1,
|
630 |
+
dx1,
|
631 |
+
_dw1,
|
632 |
+
_db1,
|
633 |
+
dresidual_in,
|
634 |
+
rowscale,
|
635 |
+
seeds,
|
636 |
+
mean,
|
637 |
+
rstd,
|
638 |
+
x.stride(0),
|
639 |
+
0 if not recompute_output else y.stride(0),
|
640 |
+
dy.stride(0),
|
641 |
+
dx.stride(0),
|
642 |
+
dresidual.stride(0) if dresidual is not None else 0,
|
643 |
+
dy1.stride(0) if dy1 is not None else 0,
|
644 |
+
dx1.stride(0) if dx1 is not None else 0,
|
645 |
+
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
646 |
+
M,
|
647 |
+
N,
|
648 |
+
eps,
|
649 |
+
dropout_p,
|
650 |
+
zero_centered_weight,
|
651 |
+
rows_per_program,
|
652 |
+
is_rms_norm,
|
653 |
+
BLOCK_N,
|
654 |
+
dresidual is not None,
|
655 |
+
dresidual_in is not None,
|
656 |
+
bias is not None,
|
657 |
+
dropout_p > 0.0,
|
658 |
+
)
|
659 |
+
dw = _dw.sum(0).to(weight.dtype)
|
660 |
+
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
661 |
+
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
662 |
+
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
663 |
+
# Don't need to compute dresidual_in separately in this case
|
664 |
+
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
|
665 |
+
dresidual_in = dx
|
666 |
+
if has_x1 and dropout_p == 0.0:
|
667 |
+
dx1 = dx
|
668 |
+
return (
|
669 |
+
(dx, dw, db, dresidual_in, dx1, dw1, db1)
|
670 |
+
if not recompute_output
|
671 |
+
else (dx, dw, db, dresidual_in, dx1, dw1, db1, y)
|
672 |
+
)
|
673 |
+
|
674 |
+
class LayerNormFn(torch.autograd.Function):
|
675 |
+
@staticmethod
|
676 |
+
def forward(
|
677 |
+
ctx,
|
678 |
+
x,
|
679 |
+
weight,
|
680 |
+
bias,
|
681 |
+
residual=None,
|
682 |
+
x1=None,
|
683 |
+
weight1=None,
|
684 |
+
bias1=None,
|
685 |
+
eps=1e-6,
|
686 |
+
dropout_p=0.0,
|
687 |
+
rowscale=None,
|
688 |
+
prenorm=False,
|
689 |
+
residual_in_fp32=False,
|
690 |
+
zero_centered_weight=False,
|
691 |
+
is_rms_norm=False,
|
692 |
+
return_dropout_mask=False,
|
693 |
+
out=None,
|
694 |
+
residual_out=None
|
695 |
+
):
|
696 |
+
x_shape_og = x.shape
|
697 |
+
# Check for zero sequence length
|
698 |
+
if x.numel() == 0:
|
699 |
+
ctx.zero_seq_length = True
|
700 |
+
# Only save minimal required tensors for backward
|
701 |
+
# ctx.save_for_backward(weight, bias, weight1, bias1)
|
702 |
+
ctx.x_shape_og = x_shape_og
|
703 |
+
ctx.weight_shape = weight.shape
|
704 |
+
ctx.weight_dtype = weight.dtype
|
705 |
+
ctx.weight_device = weight.device
|
706 |
+
|
707 |
+
ctx.has_bias = bias is not None
|
708 |
+
ctx.bias_shape = bias.shape if bias is not None else None
|
709 |
+
ctx.bias_dtype = bias.dtype if bias is not None else None
|
710 |
+
ctx.bias_device = bias.device if bias is not None else None
|
711 |
+
|
712 |
+
ctx.has_weight1 = weight1 is not None
|
713 |
+
ctx.weight1_shape = weight1.shape if weight1 is not None else None
|
714 |
+
ctx.weight1_dtype = weight1.dtype if weight1 is not None else None
|
715 |
+
ctx.weight1_device = weight1.device if weight1 is not None else None
|
716 |
+
|
717 |
+
ctx.has_bias1 = bias1 is not None
|
718 |
+
ctx.bias1_shape = bias1.shape if bias1 is not None else None
|
719 |
+
ctx.bias1_dtype = bias1.dtype if bias1 is not None else None
|
720 |
+
ctx.bias1_device = bias1.device if bias1 is not None else None
|
721 |
+
|
722 |
+
ctx.has_residual = residual is not None
|
723 |
+
ctx.has_x1 = x1 is not None
|
724 |
+
ctx.dropout_p = dropout_p
|
725 |
+
|
726 |
+
# Handle output tensors with correct dtype
|
727 |
+
y = x # Preserve input tensor properties
|
728 |
+
y1 = torch.empty_like(x) if x1 is not None else None
|
729 |
+
|
730 |
+
# Only create residual_out if prenorm is True
|
731 |
+
residual_out = torch.empty(x.shape,
|
732 |
+
dtype=torch.float32 if residual_in_fp32 else x.dtype,
|
733 |
+
device=x.device) if prenorm else None
|
734 |
+
|
735 |
+
# Handle dropout masks
|
736 |
+
dropout_mask = None
|
737 |
+
dropout_mask1 = None
|
738 |
+
if return_dropout_mask:
|
739 |
+
dropout_mask = torch.empty_like(x, dtype=torch.uint8)
|
740 |
+
if x1 is not None:
|
741 |
+
dropout_mask1 = torch.empty_like(x, dtype=torch.uint8)
|
742 |
+
|
743 |
+
# Return based on configuration
|
744 |
+
if not return_dropout_mask:
|
745 |
+
if weight1 is None:
|
746 |
+
return y if not prenorm else (y, residual_out)
|
747 |
+
else:
|
748 |
+
return (y, y1) if not prenorm else (y, y1, residual_out)
|
749 |
+
else:
|
750 |
+
if weight1 is None:
|
751 |
+
return ((y, dropout_mask, dropout_mask1) if not prenorm
|
752 |
+
else (y, residual_out, dropout_mask, dropout_mask1))
|
753 |
+
else:
|
754 |
+
return ((y, y1, dropout_mask, dropout_mask1) if not prenorm
|
755 |
+
else (y, y1, residual_out, dropout_mask, dropout_mask1))
|
756 |
+
|
757 |
+
ctx.zero_seq_length = False
|
758 |
+
# reshape input data into 2D tensor
|
759 |
+
x = x.reshape(-1, x.shape[-1])
|
760 |
+
if x.stride(-1) != 1:
|
761 |
+
x = x.contiguous()
|
762 |
+
if residual is not None:
|
763 |
+
assert residual.shape == x_shape_og
|
764 |
+
residual = residual.reshape(-1, residual.shape[-1])
|
765 |
+
if residual.stride(-1) != 1:
|
766 |
+
residual = residual.contiguous()
|
767 |
+
if x1 is not None:
|
768 |
+
assert x1.shape == x_shape_og
|
769 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
770 |
+
x1 = x1.reshape(-1, x1.shape[-1])
|
771 |
+
if x1.stride(-1) != 1:
|
772 |
+
x1 = x1.contiguous()
|
773 |
+
weight = weight.contiguous()
|
774 |
+
if bias is not None:
|
775 |
+
bias = bias.contiguous()
|
776 |
+
if weight1 is not None:
|
777 |
+
weight1 = weight1.contiguous()
|
778 |
+
if bias1 is not None:
|
779 |
+
bias1 = bias1.contiguous()
|
780 |
+
if rowscale is not None:
|
781 |
+
rowscale = rowscale.reshape(-1).contiguous()
|
782 |
+
residual_dtype = (
|
783 |
+
residual.dtype
|
784 |
+
if residual is not None
|
785 |
+
else (torch.float32 if residual_in_fp32 else None)
|
786 |
+
)
|
787 |
+
if out is not None:
|
788 |
+
out = out.reshape(-1, out.shape[-1])
|
789 |
+
if residual_out is not None:
|
790 |
+
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
791 |
+
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
|
792 |
+
x,
|
793 |
+
weight,
|
794 |
+
bias,
|
795 |
+
eps,
|
796 |
+
residual,
|
797 |
+
x1,
|
798 |
+
weight1,
|
799 |
+
bias1,
|
800 |
+
dropout_p=dropout_p,
|
801 |
+
rowscale=rowscale,
|
802 |
+
residual_dtype=residual_dtype,
|
803 |
+
zero_centered_weight=zero_centered_weight,
|
804 |
+
is_rms_norm=is_rms_norm,
|
805 |
+
return_dropout_mask=return_dropout_mask,
|
806 |
+
out=out,
|
807 |
+
residual_out=residual_out
|
808 |
+
)
|
809 |
+
ctx.save_for_backward(
|
810 |
+
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
811 |
+
)
|
812 |
+
ctx.x_shape_og = x_shape_og
|
813 |
+
ctx.eps = eps
|
814 |
+
ctx.dropout_p = dropout_p
|
815 |
+
ctx.is_rms_norm = is_rms_norm
|
816 |
+
ctx.has_residual = residual is not None
|
817 |
+
ctx.has_x1 = x1 is not None
|
818 |
+
ctx.prenorm = prenorm
|
819 |
+
ctx.x_dtype = x.dtype
|
820 |
+
ctx.zero_centered_weight = zero_centered_weight
|
821 |
+
y = y.reshape(x_shape_og)
|
822 |
+
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
823 |
+
residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None
|
824 |
+
dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
825 |
+
dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
826 |
+
if not return_dropout_mask:
|
827 |
+
if weight1 is None:
|
828 |
+
return y if not prenorm else (y, residual_out)
|
829 |
+
else:
|
830 |
+
return (y, y1) if not prenorm else (y, y1, residual_out)
|
831 |
+
else:
|
832 |
+
if weight1 is None:
|
833 |
+
return (
|
834 |
+
(y, dropout_mask, dropout_mask1)
|
835 |
+
if not prenorm
|
836 |
+
else (y, residual_out, dropout_mask, dropout_mask1)
|
837 |
+
)
|
838 |
+
else:
|
839 |
+
return (
|
840 |
+
(y, y1, dropout_mask, dropout_mask1)
|
841 |
+
if not prenorm
|
842 |
+
else (y, y1, residual_out, dropout_mask, dropout_mask1)
|
843 |
+
)
|
844 |
+
|
845 |
+
@staticmethod
|
846 |
+
def backward(ctx, dy, *args):
|
847 |
+
if ctx.zero_seq_length:
|
848 |
+
return (
|
849 |
+
torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device),
|
850 |
+
torch.zeros(ctx.weight_shape, dtype=ctx.weight_dtype, device=ctx.weight_device),
|
851 |
+
torch.zeros(ctx.bias_shape, dtype=ctx.bias_dtype, device=ctx.bias_device) if ctx.has_bias else None,
|
852 |
+
torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device) if ctx.has_residual else None,
|
853 |
+
torch.zeros(ctx.x_shape_og, dtype=dy.dtype, device=dy.device) if ctx.has_x1 and ctx.dropout_p > 0.0 else None,
|
854 |
+
torch.zeros(ctx.weight1_shape, dtype=ctx.weight1_dtype, device=ctx.weight1_device) if ctx.has_weight1 else None,
|
855 |
+
torch.zeros(ctx.bias1_shape, dtype=ctx.bias1_dtype, device=ctx.bias1_device) if ctx.has_bias1 else None,
|
856 |
+
None,
|
857 |
+
None,
|
858 |
+
None,
|
859 |
+
None,
|
860 |
+
None,
|
861 |
+
None,
|
862 |
+
None,
|
863 |
+
None,
|
864 |
+
None,
|
865 |
+
None,
|
866 |
+
)
|
867 |
+
|
868 |
+
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
869 |
+
dy = dy.reshape(-1, dy.shape[-1])
|
870 |
+
if dy.stride(-1) != 1:
|
871 |
+
dy = dy.contiguous()
|
872 |
+
assert dy.shape == x.shape
|
873 |
+
if weight1 is not None:
|
874 |
+
dy1, args = args[0], args[1:]
|
875 |
+
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
876 |
+
if dy1.stride(-1) != 1:
|
877 |
+
dy1 = dy1.contiguous()
|
878 |
+
assert dy1.shape == x.shape
|
879 |
+
else:
|
880 |
+
dy1 = None
|
881 |
+
if ctx.prenorm:
|
882 |
+
dresidual = args[0]
|
883 |
+
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
884 |
+
if dresidual.stride(-1) != 1:
|
885 |
+
dresidual = dresidual.contiguous()
|
886 |
+
assert dresidual.shape == x.shape
|
887 |
+
else:
|
888 |
+
dresidual = None
|
889 |
+
|
890 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1 = _layer_norm_bwd(
|
891 |
+
dy,
|
892 |
+
x,
|
893 |
+
weight,
|
894 |
+
bias,
|
895 |
+
ctx.eps,
|
896 |
+
mean,
|
897 |
+
rstd,
|
898 |
+
dresidual,
|
899 |
+
dy1,
|
900 |
+
weight1,
|
901 |
+
bias1,
|
902 |
+
seeds,
|
903 |
+
ctx.dropout_p,
|
904 |
+
rowscale,
|
905 |
+
ctx.has_residual,
|
906 |
+
ctx.has_x1,
|
907 |
+
ctx.zero_centered_weight,
|
908 |
+
ctx.is_rms_norm,
|
909 |
+
x_dtype=ctx.x_dtype,
|
910 |
+
)
|
911 |
+
return (
|
912 |
+
dx.reshape(ctx.x_shape_og),
|
913 |
+
dw,
|
914 |
+
db,
|
915 |
+
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
916 |
+
dx1.reshape(ctx.x_shape_og) if dx1 is not None else None,
|
917 |
+
dw1,
|
918 |
+
db1,
|
919 |
+
None,
|
920 |
+
None,
|
921 |
+
None,
|
922 |
+
None,
|
923 |
+
None,
|
924 |
+
None,
|
925 |
+
None,
|
926 |
+
None,
|
927 |
+
None,
|
928 |
+
None,
|
929 |
+
)
|
930 |
+
|
931 |
+
def rms_norm_fn(
|
932 |
+
x,
|
933 |
+
weight,
|
934 |
+
bias,
|
935 |
+
residual=None,
|
936 |
+
x1=None,
|
937 |
+
weight1=None,
|
938 |
+
bias1=None,
|
939 |
+
eps=1e-6,
|
940 |
+
dropout_p=0.0,
|
941 |
+
rowscale=None,
|
942 |
+
prenorm=False,
|
943 |
+
residual_in_fp32=False,
|
944 |
+
zero_centered_weight=False,
|
945 |
+
return_dropout_mask=False,
|
946 |
+
out=None,
|
947 |
+
residual_out=None
|
948 |
+
):
|
949 |
+
return LayerNormFn.apply(
|
950 |
+
x,
|
951 |
+
weight,
|
952 |
+
bias,
|
953 |
+
residual,
|
954 |
+
x1,
|
955 |
+
weight1,
|
956 |
+
bias1,
|
957 |
+
eps,
|
958 |
+
dropout_p,
|
959 |
+
rowscale,
|
960 |
+
prenorm,
|
961 |
+
residual_in_fp32,
|
962 |
+
zero_centered_weight,
|
963 |
+
True,
|
964 |
+
return_dropout_mask,
|
965 |
+
out,
|
966 |
+
residual_out
|
967 |
+
)
|
968 |
+
|
969 |
+
class RMSNorm(torch.nn.Module):
|
970 |
+
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, zero_centered_weight=False,
|
971 |
+
device=None, dtype=None):
|
972 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
973 |
+
super().__init__()
|
974 |
+
self.eps = eps
|
975 |
+
if dropout_p > 0.0:
|
976 |
+
self.drop = torch.nn.Dropout(dropout_p)
|
977 |
+
else:
|
978 |
+
self.drop = None
|
979 |
+
self.zero_centered_weight = zero_centered_weight
|
980 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
981 |
+
self.register_parameter("bias", None)
|
982 |
+
self.reset_parameters()
|
983 |
+
|
984 |
+
def reset_parameters(self):
|
985 |
+
if not self.zero_centered_weight:
|
986 |
+
torch.nn.init.ones_(self.weight)
|
987 |
+
else:
|
988 |
+
torch.nn.init.zeros_(self.weight)
|
989 |
+
|
990 |
+
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
991 |
+
return rms_norm_fn(
|
992 |
+
x,
|
993 |
+
self.weight,
|
994 |
+
self.bias,
|
995 |
+
residual=residual,
|
996 |
+
eps=self.eps,
|
997 |
+
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
|
998 |
+
prenorm=prenorm,
|
999 |
+
residual_in_fp32=residual_in_fp32,
|
1000 |
+
zero_centered_weight=self.zero_centered_weight,
|
1001 |
+
)
|
1002 |
+
else:
|
1003 |
+
from torch.nn import RMSNorm
|
1004 |
+
warnings.warn("Cannot import triton, install triton to use fused RMSNorm for better performance")
|
1005 |
+
|
1006 |
+
def swiglu(x, y):
|
1007 |
+
return F.silu(x.float(), inplace=False).to(x.dtype) * y
|
1008 |
+
|
1009 |
+
logger = logging.get_logger(__name__)
|
1010 |
+
|
1011 |
+
|
1012 |
+
class TimestepEmbedding(nn.Module):
|
1013 |
+
def __init__(
|
1014 |
+
self,
|
1015 |
+
in_channels: int,
|
1016 |
+
time_embed_dim: int,
|
1017 |
+
act_fn: str = "silu",
|
1018 |
+
out_dim: int = None,
|
1019 |
+
post_act_fn: Optional[str] = None,
|
1020 |
+
cond_proj_dim=None,
|
1021 |
+
sample_proj_bias=True,
|
1022 |
+
):
|
1023 |
+
super().__init__()
|
1024 |
+
|
1025 |
+
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
|
1026 |
+
|
1027 |
+
if cond_proj_dim is not None:
|
1028 |
+
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
|
1029 |
+
else:
|
1030 |
+
self.cond_proj = None
|
1031 |
+
|
1032 |
+
self.act = get_activation(act_fn)
|
1033 |
+
|
1034 |
+
if out_dim is not None:
|
1035 |
+
time_embed_dim_out = out_dim
|
1036 |
+
else:
|
1037 |
+
time_embed_dim_out = time_embed_dim
|
1038 |
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
|
1039 |
+
|
1040 |
+
if post_act_fn is None:
|
1041 |
+
self.post_act = None
|
1042 |
+
else:
|
1043 |
+
self.post_act = get_activation(post_act_fn)
|
1044 |
+
|
1045 |
+
self.initialize_weights()
|
1046 |
+
|
1047 |
+
def initialize_weights(self):
|
1048 |
+
nn.init.normal_(self.linear_1.weight, std=0.02)
|
1049 |
+
nn.init.zeros_(self.linear_1.bias)
|
1050 |
+
nn.init.normal_(self.linear_2.weight, std=0.02)
|
1051 |
+
nn.init.zeros_(self.linear_2.bias)
|
1052 |
+
|
1053 |
+
def forward(self, sample, condition=None):
|
1054 |
+
if condition is not None:
|
1055 |
+
sample = sample + self.cond_proj(condition)
|
1056 |
+
sample = self.linear_1(sample)
|
1057 |
+
|
1058 |
+
if self.act is not None:
|
1059 |
+
sample = self.act(sample)
|
1060 |
+
|
1061 |
+
sample = self.linear_2(sample)
|
1062 |
+
|
1063 |
+
if self.post_act is not None:
|
1064 |
+
sample = self.post_act(sample)
|
1065 |
+
return sample
|
1066 |
+
|
1067 |
+
def apply_rotary_emb(
|
1068 |
+
x: torch.Tensor,
|
1069 |
+
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
1070 |
+
use_real: bool = True,
|
1071 |
+
use_real_unbind_dim: int = -1,
|
1072 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1073 |
+
"""
|
1074 |
+
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
1075 |
+
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
1076 |
+
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
1077 |
+
tensors contain rotary embeddings and are returned as real tensors.
|
1078 |
+
|
1079 |
+
Args:
|
1080 |
+
x (`torch.Tensor`):
|
1081 |
+
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
|
1082 |
+
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
1083 |
+
|
1084 |
+
Returns:
|
1085 |
+
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
1086 |
+
"""
|
1087 |
+
if use_real:
|
1088 |
+
cos, sin = freqs_cis # [S, D]
|
1089 |
+
cos = cos[None, None]
|
1090 |
+
sin = sin[None, None]
|
1091 |
+
cos, sin = cos.to(x.device), sin.to(x.device)
|
1092 |
+
|
1093 |
+
if use_real_unbind_dim == -1:
|
1094 |
+
# Used for flux, cogvideox, hunyuan-dit
|
1095 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
1096 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
1097 |
+
elif use_real_unbind_dim == -2:
|
1098 |
+
# Used for Stable Audio, OmniGen and CogView4
|
1099 |
+
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
1100 |
+
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
1101 |
+
else:
|
1102 |
+
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
|
1103 |
+
|
1104 |
+
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
1105 |
+
|
1106 |
+
return out
|
1107 |
+
else:
|
1108 |
+
# used for lumina
|
1109 |
+
# x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
1110 |
+
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], x.shape[-1] // 2, 2))
|
1111 |
+
freqs_cis = freqs_cis.unsqueeze(2)
|
1112 |
+
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
|
1113 |
+
|
1114 |
+
return x_out.type_as(x)
|
1115 |
+
|
1116 |
+
class OmniGen2RotaryPosEmbed(nn.Module):
|
1117 |
+
def __init__(self, theta: int,
|
1118 |
+
axes_dim: Tuple[int, int, int],
|
1119 |
+
axes_lens: Tuple[int, int, int] = (300, 512, 512),
|
1120 |
+
patch_size: int = 2):
|
1121 |
+
super().__init__()
|
1122 |
+
self.theta = theta
|
1123 |
+
self.axes_dim = axes_dim
|
1124 |
+
self.axes_lens = axes_lens
|
1125 |
+
self.patch_size = patch_size
|
1126 |
+
|
1127 |
+
@staticmethod
|
1128 |
+
def get_freqs_cis(axes_dim: Tuple[int, int, int],
|
1129 |
+
axes_lens: Tuple[int, int, int],
|
1130 |
+
theta: int) -> List[torch.Tensor]:
|
1131 |
+
freqs_cis = []
|
1132 |
+
freqs_dtype = torch.float32 if torch.backends.mps.is_available() else torch.float64
|
1133 |
+
for i, (d, e) in enumerate(zip(axes_dim, axes_lens)):
|
1134 |
+
emb = get_1d_rotary_pos_embed(d, e, theta=theta, freqs_dtype=freqs_dtype)
|
1135 |
+
freqs_cis.append(emb)
|
1136 |
+
return freqs_cis
|
1137 |
+
|
1138 |
+
def _get_freqs_cis(self, freqs_cis, ids: torch.Tensor) -> torch.Tensor:
|
1139 |
+
device = ids.device
|
1140 |
+
if ids.device.type == "mps":
|
1141 |
+
ids = ids.to("cpu")
|
1142 |
+
|
1143 |
+
result = []
|
1144 |
+
for i in range(len(self.axes_dim)):
|
1145 |
+
freqs = freqs_cis[i].to(ids.device)
|
1146 |
+
index = ids[:, :, i : i + 1].repeat(1, 1, freqs.shape[-1]).to(torch.int64)
|
1147 |
+
result.append(torch.gather(freqs.unsqueeze(0).repeat(index.shape[0], 1, 1), dim=1, index=index))
|
1148 |
+
return torch.cat(result, dim=-1).to(device)
|
1149 |
+
|
1150 |
+
def forward(
|
1151 |
+
self,
|
1152 |
+
freqs_cis,
|
1153 |
+
attention_mask,
|
1154 |
+
l_effective_ref_img_len,
|
1155 |
+
l_effective_img_len,
|
1156 |
+
ref_img_sizes,
|
1157 |
+
img_sizes,
|
1158 |
+
device
|
1159 |
+
):
|
1160 |
+
batch_size = len(attention_mask)
|
1161 |
+
p = self.patch_size
|
1162 |
+
|
1163 |
+
encoder_seq_len = attention_mask.shape[1]
|
1164 |
+
l_effective_cap_len = attention_mask.sum(dim=1).tolist()
|
1165 |
+
|
1166 |
+
seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)]
|
1167 |
+
|
1168 |
+
max_seq_len = max(seq_lengths)
|
1169 |
+
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
|
1170 |
+
max_img_len = max(l_effective_img_len)
|
1171 |
+
|
1172 |
+
# Create position IDs
|
1173 |
+
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)
|
1174 |
+
|
1175 |
+
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
|
1176 |
+
# add text position ids
|
1177 |
+
position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3")
|
1178 |
+
|
1179 |
+
pe_shift = cap_seq_len
|
1180 |
+
pe_shift_len = cap_seq_len
|
1181 |
+
|
1182 |
+
if ref_img_sizes[i] is not None:
|
1183 |
+
for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]):
|
1184 |
+
H, W = ref_img_size
|
1185 |
+
ref_H_tokens, ref_W_tokens = H // p, W // p
|
1186 |
+
assert ref_H_tokens * ref_W_tokens == ref_img_len
|
1187 |
+
# add image position ids
|
1188 |
+
|
1189 |
+
row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten()
|
1190 |
+
col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten()
|
1191 |
+
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift
|
1192 |
+
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids
|
1193 |
+
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids
|
1194 |
+
|
1195 |
+
pe_shift += max(ref_H_tokens, ref_W_tokens)
|
1196 |
+
pe_shift_len += ref_img_len
|
1197 |
+
|
1198 |
+
H, W = img_sizes[i]
|
1199 |
+
H_tokens, W_tokens = H // p, W // p
|
1200 |
+
assert H_tokens * W_tokens == l_effective_img_len[i]
|
1201 |
+
|
1202 |
+
row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten()
|
1203 |
+
col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten()
|
1204 |
+
|
1205 |
+
assert pe_shift_len + l_effective_img_len[i] == seq_len
|
1206 |
+
position_ids[i, pe_shift_len: seq_len, 0] = pe_shift
|
1207 |
+
position_ids[i, pe_shift_len: seq_len, 1] = row_ids
|
1208 |
+
position_ids[i, pe_shift_len: seq_len, 2] = col_ids
|
1209 |
+
|
1210 |
+
# Get combined rotary embeddings
|
1211 |
+
freqs_cis = self._get_freqs_cis(freqs_cis, position_ids)
|
1212 |
+
|
1213 |
+
# create separate rotary embeddings for captions and images
|
1214 |
+
cap_freqs_cis = torch.zeros(
|
1215 |
+
batch_size, encoder_seq_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
|
1216 |
+
)
|
1217 |
+
ref_img_freqs_cis = torch.zeros(
|
1218 |
+
batch_size, max_ref_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
|
1219 |
+
)
|
1220 |
+
img_freqs_cis = torch.zeros(
|
1221 |
+
batch_size, max_img_len, freqs_cis.shape[-1], device=device, dtype=freqs_cis.dtype
|
1222 |
+
)
|
1223 |
+
|
1224 |
+
for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)):
|
1225 |
+
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
|
1226 |
+
ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)]
|
1227 |
+
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len]
|
1228 |
+
|
1229 |
+
return (
|
1230 |
+
cap_freqs_cis,
|
1231 |
+
ref_img_freqs_cis,
|
1232 |
+
img_freqs_cis,
|
1233 |
+
freqs_cis,
|
1234 |
+
l_effective_cap_len,
|
1235 |
+
seq_lengths,
|
1236 |
+
)
|
1237 |
+
|
1238 |
+
|
1239 |
+
class LuminaRMSNormZero(nn.Module):
|
1240 |
+
"""
|
1241 |
+
Norm layer adaptive RMS normalization zero.
|
1242 |
+
|
1243 |
+
Parameters:
|
1244 |
+
embedding_dim (`int`): The size of each embedding vector.
|
1245 |
+
"""
|
1246 |
+
|
1247 |
+
def __init__(
|
1248 |
+
self,
|
1249 |
+
embedding_dim: int,
|
1250 |
+
norm_eps: float,
|
1251 |
+
norm_elementwise_affine: bool,
|
1252 |
+
):
|
1253 |
+
super().__init__()
|
1254 |
+
self.silu = nn.SiLU()
|
1255 |
+
self.linear = nn.Linear(
|
1256 |
+
min(embedding_dim, 1024),
|
1257 |
+
4 * embedding_dim,
|
1258 |
+
bias=True,
|
1259 |
+
)
|
1260 |
+
self.norm = RMSNorm(embedding_dim, eps=norm_eps)
|
1261 |
+
|
1262 |
+
def forward(
|
1263 |
+
self,
|
1264 |
+
x: torch.Tensor,
|
1265 |
+
emb: Optional[torch.Tensor] = None,
|
1266 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
1267 |
+
emb = self.linear(self.silu(emb))
|
1268 |
+
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
|
1269 |
+
x = self.norm(x) * (1 + scale_msa[:, None])
|
1270 |
+
return x, gate_msa, scale_mlp, gate_mlp
|
1271 |
+
|
1272 |
+
|
1273 |
+
class LuminaLayerNormContinuous(nn.Module):
|
1274 |
+
def __init__(
|
1275 |
+
self,
|
1276 |
+
embedding_dim: int,
|
1277 |
+
conditioning_embedding_dim: int,
|
1278 |
+
# NOTE: It is a bit weird that the norm layer can be configured to have scale and shift parameters
|
1279 |
+
# because the output is immediately scaled and shifted by the projected conditioning embeddings.
|
1280 |
+
# Note that AdaLayerNorm does not let the norm layer have scale and shift parameters.
|
1281 |
+
# However, this is how it was implemented in the original code, and it's rather likely you should
|
1282 |
+
# set `elementwise_affine` to False.
|
1283 |
+
elementwise_affine=True,
|
1284 |
+
eps=1e-5,
|
1285 |
+
bias=True,
|
1286 |
+
norm_type="layer_norm",
|
1287 |
+
out_dim: Optional[int] = None,
|
1288 |
+
):
|
1289 |
+
super().__init__()
|
1290 |
+
|
1291 |
+
# AdaLN
|
1292 |
+
self.silu = nn.SiLU()
|
1293 |
+
self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias)
|
1294 |
+
|
1295 |
+
if norm_type == "layer_norm":
|
1296 |
+
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
1297 |
+
elif norm_type == "rms_norm":
|
1298 |
+
self.norm = RMSNorm(embedding_dim, eps=eps, elementwise_affine=elementwise_affine)
|
1299 |
+
else:
|
1300 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
1301 |
+
|
1302 |
+
self.linear_2 = None
|
1303 |
+
if out_dim is not None:
|
1304 |
+
self.linear_2 = nn.Linear(embedding_dim, out_dim, bias=bias)
|
1305 |
+
|
1306 |
+
def forward(
|
1307 |
+
self,
|
1308 |
+
x: torch.Tensor,
|
1309 |
+
conditioning_embedding: torch.Tensor,
|
1310 |
+
) -> torch.Tensor:
|
1311 |
+
# convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT)
|
1312 |
+
emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
|
1313 |
+
scale = emb
|
1314 |
+
x = self.norm(x) * (1 + scale)[:, None, :]
|
1315 |
+
|
1316 |
+
if self.linear_2 is not None:
|
1317 |
+
x = self.linear_2(x)
|
1318 |
+
|
1319 |
+
return x
|
1320 |
+
|
1321 |
+
|
1322 |
+
class LuminaFeedForward(nn.Module):
|
1323 |
+
r"""
|
1324 |
+
A feed-forward layer.
|
1325 |
+
|
1326 |
+
Parameters:
|
1327 |
+
hidden_size (`int`):
|
1328 |
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
1329 |
+
hidden representations.
|
1330 |
+
intermediate_size (`int`): The intermediate dimension of the feedforward layer.
|
1331 |
+
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
|
1332 |
+
of this value.
|
1333 |
+
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
|
1334 |
+
dimension. Defaults to None.
|
1335 |
+
"""
|
1336 |
+
|
1337 |
+
def __init__(
|
1338 |
+
self,
|
1339 |
+
dim: int,
|
1340 |
+
inner_dim: int,
|
1341 |
+
multiple_of: Optional[int] = 256,
|
1342 |
+
ffn_dim_multiplier: Optional[float] = None,
|
1343 |
+
):
|
1344 |
+
super().__init__()
|
1345 |
+
|
1346 |
+
self.swiglu = swiglu
|
1347 |
+
|
1348 |
+
# custom hidden_size factor multiplier
|
1349 |
+
if ffn_dim_multiplier is not None:
|
1350 |
+
inner_dim = int(ffn_dim_multiplier * inner_dim)
|
1351 |
+
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
|
1352 |
+
|
1353 |
+
self.linear_1 = nn.Linear(
|
1354 |
+
dim,
|
1355 |
+
inner_dim,
|
1356 |
+
bias=False,
|
1357 |
+
)
|
1358 |
+
self.linear_2 = nn.Linear(
|
1359 |
+
inner_dim,
|
1360 |
+
dim,
|
1361 |
+
bias=False,
|
1362 |
+
)
|
1363 |
+
self.linear_3 = nn.Linear(
|
1364 |
+
dim,
|
1365 |
+
inner_dim,
|
1366 |
+
bias=False,
|
1367 |
+
)
|
1368 |
+
|
1369 |
+
def forward(self, x):
|
1370 |
+
h1, h2 = self.linear_1(x), self.linear_3(x)
|
1371 |
+
return self.linear_2(self.swiglu(h1, h2))
|
1372 |
+
|
1373 |
+
|
1374 |
+
class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
|
1375 |
+
def __init__(
|
1376 |
+
self,
|
1377 |
+
hidden_size: int = 4096,
|
1378 |
+
text_feat_dim: int = 2048,
|
1379 |
+
frequency_embedding_size: int = 256,
|
1380 |
+
norm_eps: float = 1e-5,
|
1381 |
+
timestep_scale: float = 1.0,
|
1382 |
+
) -> None:
|
1383 |
+
super().__init__()
|
1384 |
+
|
1385 |
+
self.time_proj = Timesteps(
|
1386 |
+
num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=timestep_scale
|
1387 |
+
)
|
1388 |
+
|
1389 |
+
self.timestep_embedder = TimestepEmbedding(
|
1390 |
+
in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024)
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
self.caption_embedder = nn.Sequential(
|
1394 |
+
RMSNorm(text_feat_dim, eps=norm_eps),
|
1395 |
+
nn.Linear(text_feat_dim, hidden_size, bias=True),
|
1396 |
+
)
|
1397 |
+
|
1398 |
+
self._initialize_weights()
|
1399 |
+
|
1400 |
+
def _initialize_weights(self):
|
1401 |
+
nn.init.trunc_normal_(self.caption_embedder[1].weight, std=0.02)
|
1402 |
+
nn.init.zeros_(self.caption_embedder[1].bias)
|
1403 |
+
|
1404 |
+
def forward(
|
1405 |
+
self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype
|
1406 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
1407 |
+
timestep_proj = self.time_proj(timestep).to(dtype=dtype)
|
1408 |
+
time_embed = self.timestep_embedder(timestep_proj)
|
1409 |
+
caption_embed = self.caption_embedder(text_hidden_states)
|
1410 |
+
return time_embed, caption_embed
|
1411 |
+
|
1412 |
+
|
1413 |
+
class OmniGen2AttnProcessor:
|
1414 |
+
"""
|
1415 |
+
Processor for implementing scaled dot-product attention.
|
1416 |
+
|
1417 |
+
This processor is optimized for PyTorch 2.0 and implements:
|
1418 |
+
- Flash attention with variable length sequences
|
1419 |
+
- Rotary position embeddings (RoPE)
|
1420 |
+
- Query-Key normalization
|
1421 |
+
- Proportional attention scaling
|
1422 |
+
|
1423 |
+
Args:
|
1424 |
+
None
|
1425 |
+
|
1426 |
+
Raises:
|
1427 |
+
ImportError: If PyTorch version is less than 2.0
|
1428 |
+
"""
|
1429 |
+
|
1430 |
+
def __init__(self) -> None:
|
1431 |
+
"""Initialize the attention processor."""
|
1432 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
1433 |
+
raise ImportError(
|
1434 |
+
"OmniGen2AttnProcessorFlash2Varlen requires PyTorch 2.0. "
|
1435 |
+
"Please upgrade PyTorch to version 2.0 or later."
|
1436 |
+
)
|
1437 |
+
|
1438 |
+
def __call__(
|
1439 |
+
self,
|
1440 |
+
attn: Attention,
|
1441 |
+
hidden_states: torch.Tensor,
|
1442 |
+
encoder_hidden_states: torch.Tensor,
|
1443 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1444 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
1445 |
+
base_sequence_length: Optional[int] = None,
|
1446 |
+
) -> torch.Tensor:
|
1447 |
+
"""
|
1448 |
+
Process attention computation with flash attention.
|
1449 |
+
|
1450 |
+
Args:
|
1451 |
+
attn: Attention module
|
1452 |
+
hidden_states: Hidden states tensor of shape (batch_size, seq_len, hidden_dim)
|
1453 |
+
encoder_hidden_states: Encoder hidden states tensor
|
1454 |
+
attention_mask: Optional attention mask tensor
|
1455 |
+
image_rotary_emb: Optional rotary embeddings for image tokens
|
1456 |
+
base_sequence_length: Optional base sequence length for proportional attention
|
1457 |
+
|
1458 |
+
Returns:
|
1459 |
+
torch.Tensor: Processed hidden states after attention computation
|
1460 |
+
"""
|
1461 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
1462 |
+
|
1463 |
+
# Get Query-Key-Value Pair
|
1464 |
+
query = attn.to_q(hidden_states)
|
1465 |
+
key = attn.to_k(encoder_hidden_states)
|
1466 |
+
value = attn.to_v(encoder_hidden_states)
|
1467 |
+
|
1468 |
+
query_dim = query.shape[-1]
|
1469 |
+
inner_dim = key.shape[-1]
|
1470 |
+
head_dim = query_dim // attn.heads
|
1471 |
+
dtype = query.dtype
|
1472 |
+
|
1473 |
+
# Get key-value heads
|
1474 |
+
kv_heads = inner_dim // head_dim
|
1475 |
+
|
1476 |
+
# Reshape tensors for attention computation
|
1477 |
+
query = query.view(batch_size, -1, attn.heads, head_dim)
|
1478 |
+
key = key.view(batch_size, -1, kv_heads, head_dim)
|
1479 |
+
value = value.view(batch_size, -1, kv_heads, head_dim)
|
1480 |
+
|
1481 |
+
# Apply Query-Key normalization
|
1482 |
+
if attn.norm_q is not None:
|
1483 |
+
query = attn.norm_q(query)
|
1484 |
+
if attn.norm_k is not None:
|
1485 |
+
key = attn.norm_k(key)
|
1486 |
+
|
1487 |
+
# Apply Rotary Position Embeddings
|
1488 |
+
if image_rotary_emb is not None:
|
1489 |
+
query = apply_rotary_emb(query, image_rotary_emb, use_real=False)
|
1490 |
+
key = apply_rotary_emb(key, image_rotary_emb, use_real=False)
|
1491 |
+
|
1492 |
+
query, key = query.to(dtype), key.to(dtype)
|
1493 |
+
|
1494 |
+
# Calculate attention scale
|
1495 |
+
if base_sequence_length is not None:
|
1496 |
+
softmax_scale = math.sqrt(math.log(sequence_length, base_sequence_length)) * attn.scale
|
1497 |
+
else:
|
1498 |
+
softmax_scale = attn.scale
|
1499 |
+
|
1500 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
1501 |
+
# (batch, heads, source_length, target_length)
|
1502 |
+
if attention_mask is not None:
|
1503 |
+
attention_mask = attention_mask.bool().view(batch_size, 1, 1, -1)
|
1504 |
+
|
1505 |
+
query = query.transpose(1, 2)
|
1506 |
+
key = key.transpose(1, 2)
|
1507 |
+
value = value.transpose(1, 2)
|
1508 |
+
|
1509 |
+
# explicitly repeat key and value to match query length, otherwise using enable_gqa=True results in MATH backend of sdpa in our test of pytorch2.6
|
1510 |
+
key = key.repeat_interleave(query.size(-3) // key.size(-3), -3)
|
1511 |
+
value = value.repeat_interleave(query.size(-3) // value.size(-3), -3)
|
1512 |
+
|
1513 |
+
hidden_states = F.scaled_dot_product_attention(
|
1514 |
+
query, key, value, attn_mask=attention_mask, scale=softmax_scale
|
1515 |
+
)
|
1516 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1517 |
+
hidden_states = hidden_states.type_as(query)
|
1518 |
+
|
1519 |
+
# Apply output projection
|
1520 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1521 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1522 |
+
|
1523 |
+
return hidden_states
|
1524 |
+
|
1525 |
+
class OmniGen2TransformerBlock(nn.Module):
|
1526 |
+
"""
|
1527 |
+
Transformer block for OmniGen2 model.
|
1528 |
+
|
1529 |
+
This block implements a transformer layer with:
|
1530 |
+
- Multi-head attention with flash attention
|
1531 |
+
- Feed-forward network with SwiGLU activation
|
1532 |
+
- RMS normalization
|
1533 |
+
- Optional modulation for conditional generation
|
1534 |
+
|
1535 |
+
Args:
|
1536 |
+
dim: Dimension of the input and output tensors
|
1537 |
+
num_attention_heads: Number of attention heads
|
1538 |
+
num_kv_heads: Number of key-value heads
|
1539 |
+
multiple_of: Multiple of which the hidden dimension should be
|
1540 |
+
ffn_dim_multiplier: Multiplier for the feed-forward network dimension
|
1541 |
+
norm_eps: Epsilon value for normalization layers
|
1542 |
+
modulation: Whether to use modulation for conditional generation
|
1543 |
+
use_fused_rms_norm: Whether to use fused RMS normalization
|
1544 |
+
use_fused_swiglu: Whether to use fused SwiGLU activation
|
1545 |
+
"""
|
1546 |
+
|
1547 |
+
def __init__(
|
1548 |
+
self,
|
1549 |
+
dim: int,
|
1550 |
+
num_attention_heads: int,
|
1551 |
+
num_kv_heads: int,
|
1552 |
+
multiple_of: int,
|
1553 |
+
ffn_dim_multiplier: float,
|
1554 |
+
norm_eps: float,
|
1555 |
+
modulation: bool = True,
|
1556 |
+
) -> None:
|
1557 |
+
"""Initialize the transformer block."""
|
1558 |
+
super().__init__()
|
1559 |
+
self.head_dim = dim // num_attention_heads
|
1560 |
+
self.modulation = modulation
|
1561 |
+
|
1562 |
+
# Initialize attention layer
|
1563 |
+
self.attn = Attention(
|
1564 |
+
query_dim=dim,
|
1565 |
+
cross_attention_dim=None,
|
1566 |
+
dim_head=dim // num_attention_heads,
|
1567 |
+
qk_norm="rms_norm",
|
1568 |
+
heads=num_attention_heads,
|
1569 |
+
kv_heads=num_kv_heads,
|
1570 |
+
eps=1e-5,
|
1571 |
+
bias=False,
|
1572 |
+
out_bias=False,
|
1573 |
+
processor=OmniGen2AttnProcessor(),
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
# Initialize feed-forward network
|
1577 |
+
self.feed_forward = LuminaFeedForward(
|
1578 |
+
dim=dim,
|
1579 |
+
inner_dim=4 * dim,
|
1580 |
+
multiple_of=multiple_of,
|
1581 |
+
ffn_dim_multiplier=ffn_dim_multiplier,
|
1582 |
+
)
|
1583 |
+
|
1584 |
+
# Initialize normalization layers
|
1585 |
+
if modulation:
|
1586 |
+
self.norm1 = LuminaRMSNormZero(
|
1587 |
+
embedding_dim=dim,
|
1588 |
+
norm_eps=norm_eps,
|
1589 |
+
norm_elementwise_affine=True,
|
1590 |
+
)
|
1591 |
+
else:
|
1592 |
+
self.norm1 = RMSNorm(dim, eps=norm_eps)
|
1593 |
+
|
1594 |
+
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
1595 |
+
self.norm2 = RMSNorm(dim, eps=norm_eps)
|
1596 |
+
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
1597 |
+
|
1598 |
+
self.initialize_weights()
|
1599 |
+
|
1600 |
+
def initialize_weights(self) -> None:
|
1601 |
+
"""
|
1602 |
+
Initialize the weights of the transformer block.
|
1603 |
+
|
1604 |
+
Uses Xavier uniform initialization for linear layers and zero initialization for biases.
|
1605 |
+
"""
|
1606 |
+
nn.init.xavier_uniform_(self.attn.to_q.weight)
|
1607 |
+
nn.init.xavier_uniform_(self.attn.to_k.weight)
|
1608 |
+
nn.init.xavier_uniform_(self.attn.to_v.weight)
|
1609 |
+
nn.init.xavier_uniform_(self.attn.to_out[0].weight)
|
1610 |
+
|
1611 |
+
nn.init.xavier_uniform_(self.feed_forward.linear_1.weight)
|
1612 |
+
nn.init.xavier_uniform_(self.feed_forward.linear_2.weight)
|
1613 |
+
nn.init.xavier_uniform_(self.feed_forward.linear_3.weight)
|
1614 |
+
|
1615 |
+
if self.modulation:
|
1616 |
+
nn.init.zeros_(self.norm1.linear.weight)
|
1617 |
+
nn.init.zeros_(self.norm1.linear.bias)
|
1618 |
+
|
1619 |
+
def forward(
|
1620 |
+
self,
|
1621 |
+
hidden_states: torch.Tensor,
|
1622 |
+
attention_mask: torch.Tensor,
|
1623 |
+
image_rotary_emb: torch.Tensor,
|
1624 |
+
temb: Optional[torch.Tensor] = None,
|
1625 |
+
) -> torch.Tensor:
|
1626 |
+
"""
|
1627 |
+
Forward pass of the transformer block.
|
1628 |
+
|
1629 |
+
Args:
|
1630 |
+
hidden_states: Input hidden states tensor
|
1631 |
+
attention_mask: Attention mask tensor
|
1632 |
+
image_rotary_emb: Rotary embeddings for image tokens
|
1633 |
+
temb: Optional timestep embedding tensor
|
1634 |
+
|
1635 |
+
Returns:
|
1636 |
+
torch.Tensor: Output hidden states after transformer block processing
|
1637 |
+
"""
|
1638 |
+
if self.modulation:
|
1639 |
+
if temb is None:
|
1640 |
+
raise ValueError("temb must be provided when modulation is enabled")
|
1641 |
+
|
1642 |
+
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
|
1643 |
+
attn_output = self.attn(
|
1644 |
+
hidden_states=norm_hidden_states,
|
1645 |
+
encoder_hidden_states=norm_hidden_states,
|
1646 |
+
attention_mask=attention_mask,
|
1647 |
+
image_rotary_emb=image_rotary_emb,
|
1648 |
+
)
|
1649 |
+
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
|
1650 |
+
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
|
1651 |
+
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
|
1652 |
+
else:
|
1653 |
+
norm_hidden_states = self.norm1(hidden_states)
|
1654 |
+
attn_output = self.attn(
|
1655 |
+
hidden_states=norm_hidden_states,
|
1656 |
+
encoder_hidden_states=norm_hidden_states,
|
1657 |
+
attention_mask=attention_mask,
|
1658 |
+
image_rotary_emb=image_rotary_emb,
|
1659 |
+
)
|
1660 |
+
hidden_states = hidden_states + self.norm2(attn_output)
|
1661 |
+
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
|
1662 |
+
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
|
1663 |
+
|
1664 |
+
return hidden_states
|
1665 |
+
|
1666 |
+
|
1667 |
+
class OmniGen2Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
1668 |
+
"""
|
1669 |
+
OmniGen2 Transformer 2D Model.
|
1670 |
+
|
1671 |
+
A transformer-based diffusion model for image generation with:
|
1672 |
+
- Patch-based image processing
|
1673 |
+
- Rotary position embeddings
|
1674 |
+
- Multi-head attention
|
1675 |
+
- Conditional generation support
|
1676 |
+
|
1677 |
+
Args:
|
1678 |
+
patch_size: Size of image patches
|
1679 |
+
in_channels: Number of input channels
|
1680 |
+
out_channels: Number of output channels (defaults to in_channels)
|
1681 |
+
hidden_size: Size of hidden layers
|
1682 |
+
num_layers: Number of transformer layers
|
1683 |
+
num_refiner_layers: Number of refiner layers
|
1684 |
+
num_attention_heads: Number of attention heads
|
1685 |
+
num_kv_heads: Number of key-value heads
|
1686 |
+
multiple_of: Multiple of which the hidden dimension should be
|
1687 |
+
ffn_dim_multiplier: Multiplier for feed-forward network dimension
|
1688 |
+
norm_eps: Epsilon value for normalization layers
|
1689 |
+
axes_dim_rope: Dimensions for rotary position embeddings
|
1690 |
+
axes_lens: Lengths for rotary position embeddings
|
1691 |
+
text_feat_dim: Dimension of text features
|
1692 |
+
timestep_scale: Scale factor for timestep embeddings
|
1693 |
+
use_fused_rms_norm: Whether to use fused RMS normalization
|
1694 |
+
use_fused_swiglu: Whether to use fused SwiGLU activation
|
1695 |
+
"""
|
1696 |
+
|
1697 |
+
_supports_gradient_checkpointing = True
|
1698 |
+
_no_split_modules = ["Omnigen2TransformerBlock"]
|
1699 |
+
_skip_layerwise_casting_patterns = ["x_embedder", "norm"]
|
1700 |
+
|
1701 |
+
@register_to_config
|
1702 |
+
def __init__(
|
1703 |
+
self,
|
1704 |
+
patch_size: int = 2,
|
1705 |
+
in_channels: int = 16,
|
1706 |
+
out_channels: Optional[int] = None,
|
1707 |
+
hidden_size: int = 2304,
|
1708 |
+
num_layers: int = 26,
|
1709 |
+
num_refiner_layers: int = 2,
|
1710 |
+
num_attention_heads: int = 24,
|
1711 |
+
num_kv_heads: int = 8,
|
1712 |
+
multiple_of: int = 256,
|
1713 |
+
ffn_dim_multiplier: Optional[float] = None,
|
1714 |
+
norm_eps: float = 1e-5,
|
1715 |
+
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
|
1716 |
+
axes_lens: Tuple[int, int, int] = (300, 512, 512),
|
1717 |
+
text_feat_dim: int = 1024,
|
1718 |
+
timestep_scale: float = 1.0,
|
1719 |
+
) -> None:
|
1720 |
+
"""Initialize the OmniGen2 transformer model."""
|
1721 |
+
super().__init__()
|
1722 |
+
|
1723 |
+
# Validate configuration
|
1724 |
+
if (hidden_size // num_attention_heads) != sum(axes_dim_rope):
|
1725 |
+
raise ValueError(
|
1726 |
+
f"hidden_size // num_attention_heads ({hidden_size // num_attention_heads}) "
|
1727 |
+
f"must equal sum(axes_dim_rope) ({sum(axes_dim_rope)})"
|
1728 |
+
)
|
1729 |
+
|
1730 |
+
self.out_channels = out_channels or in_channels
|
1731 |
+
|
1732 |
+
# Initialize embeddings
|
1733 |
+
self.rope_embedder = OmniGen2RotaryPosEmbed(
|
1734 |
+
theta=10000,
|
1735 |
+
axes_dim=axes_dim_rope,
|
1736 |
+
axes_lens=axes_lens,
|
1737 |
+
patch_size=patch_size,
|
1738 |
+
)
|
1739 |
+
|
1740 |
+
self.x_embedder = nn.Linear(
|
1741 |
+
in_features=patch_size * patch_size * in_channels,
|
1742 |
+
out_features=hidden_size,
|
1743 |
+
)
|
1744 |
+
|
1745 |
+
self.ref_image_patch_embedder = nn.Linear(
|
1746 |
+
in_features=patch_size * patch_size * in_channels,
|
1747 |
+
out_features=hidden_size,
|
1748 |
+
)
|
1749 |
+
|
1750 |
+
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
|
1751 |
+
hidden_size=hidden_size,
|
1752 |
+
text_feat_dim=text_feat_dim,
|
1753 |
+
norm_eps=norm_eps,
|
1754 |
+
timestep_scale=timestep_scale,
|
1755 |
+
)
|
1756 |
+
|
1757 |
+
# Initialize transformer blocks
|
1758 |
+
self.noise_refiner = nn.ModuleList([
|
1759 |
+
OmniGen2TransformerBlock(
|
1760 |
+
hidden_size,
|
1761 |
+
num_attention_heads,
|
1762 |
+
num_kv_heads,
|
1763 |
+
multiple_of,
|
1764 |
+
ffn_dim_multiplier,
|
1765 |
+
norm_eps,
|
1766 |
+
modulation=True,
|
1767 |
+
)
|
1768 |
+
for _ in range(num_refiner_layers)
|
1769 |
+
])
|
1770 |
+
|
1771 |
+
self.ref_image_refiner = nn.ModuleList([
|
1772 |
+
OmniGen2TransformerBlock(
|
1773 |
+
hidden_size,
|
1774 |
+
num_attention_heads,
|
1775 |
+
num_kv_heads,
|
1776 |
+
multiple_of,
|
1777 |
+
ffn_dim_multiplier,
|
1778 |
+
norm_eps,
|
1779 |
+
modulation=True,
|
1780 |
+
)
|
1781 |
+
for _ in range(num_refiner_layers)
|
1782 |
+
])
|
1783 |
+
|
1784 |
+
self.context_refiner = nn.ModuleList(
|
1785 |
+
[
|
1786 |
+
OmniGen2TransformerBlock(
|
1787 |
+
hidden_size,
|
1788 |
+
num_attention_heads,
|
1789 |
+
num_kv_heads,
|
1790 |
+
multiple_of,
|
1791 |
+
ffn_dim_multiplier,
|
1792 |
+
norm_eps,
|
1793 |
+
modulation=False,
|
1794 |
+
)
|
1795 |
+
for _ in range(num_refiner_layers)
|
1796 |
+
]
|
1797 |
+
)
|
1798 |
+
|
1799 |
+
# 3. Transformer blocks
|
1800 |
+
self.layers = nn.ModuleList(
|
1801 |
+
[
|
1802 |
+
OmniGen2TransformerBlock(
|
1803 |
+
hidden_size,
|
1804 |
+
num_attention_heads,
|
1805 |
+
num_kv_heads,
|
1806 |
+
multiple_of,
|
1807 |
+
ffn_dim_multiplier,
|
1808 |
+
norm_eps,
|
1809 |
+
modulation=True,
|
1810 |
+
)
|
1811 |
+
for _ in range(num_layers)
|
1812 |
+
]
|
1813 |
+
)
|
1814 |
+
|
1815 |
+
# 4. Output norm & projection
|
1816 |
+
self.norm_out = LuminaLayerNormContinuous(
|
1817 |
+
embedding_dim=hidden_size,
|
1818 |
+
conditioning_embedding_dim=min(hidden_size, 1024),
|
1819 |
+
elementwise_affine=False,
|
1820 |
+
eps=1e-6,
|
1821 |
+
bias=True,
|
1822 |
+
out_dim=patch_size * patch_size * self.out_channels,
|
1823 |
+
)
|
1824 |
+
|
1825 |
+
# Add learnable embeddings to distinguish different images
|
1826 |
+
self.image_index_embedding = nn.Parameter(torch.randn(5, hidden_size)) # support max 5 ref images
|
1827 |
+
|
1828 |
+
self.gradient_checkpointing = False
|
1829 |
+
|
1830 |
+
self.initialize_weights()
|
1831 |
+
|
1832 |
+
def initialize_weights(self) -> None:
|
1833 |
+
"""
|
1834 |
+
Initialize the weights of the model.
|
1835 |
+
|
1836 |
+
Uses Xavier uniform initialization for linear layers.
|
1837 |
+
"""
|
1838 |
+
nn.init.xavier_uniform_(self.x_embedder.weight)
|
1839 |
+
nn.init.constant_(self.x_embedder.bias, 0.0)
|
1840 |
+
|
1841 |
+
nn.init.xavier_uniform_(self.ref_image_patch_embedder.weight)
|
1842 |
+
nn.init.constant_(self.ref_image_patch_embedder.bias, 0.0)
|
1843 |
+
|
1844 |
+
nn.init.zeros_(self.norm_out.linear_1.weight)
|
1845 |
+
nn.init.zeros_(self.norm_out.linear_1.bias)
|
1846 |
+
nn.init.zeros_(self.norm_out.linear_2.weight)
|
1847 |
+
nn.init.zeros_(self.norm_out.linear_2.bias)
|
1848 |
+
|
1849 |
+
nn.init.normal_(self.image_index_embedding, std=0.02)
|
1850 |
+
|
1851 |
+
def img_patch_embed_and_refine(
|
1852 |
+
self,
|
1853 |
+
hidden_states,
|
1854 |
+
ref_image_hidden_states,
|
1855 |
+
padded_img_mask,
|
1856 |
+
padded_ref_img_mask,
|
1857 |
+
noise_rotary_emb,
|
1858 |
+
ref_img_rotary_emb,
|
1859 |
+
l_effective_ref_img_len,
|
1860 |
+
l_effective_img_len,
|
1861 |
+
temb
|
1862 |
+
):
|
1863 |
+
batch_size = len(hidden_states)
|
1864 |
+
max_combined_img_len = max([img_len + sum(ref_img_len) for img_len, ref_img_len in zip(l_effective_img_len, l_effective_ref_img_len)])
|
1865 |
+
|
1866 |
+
hidden_states = self.x_embedder(hidden_states)
|
1867 |
+
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
|
1868 |
+
|
1869 |
+
for i in range(batch_size):
|
1870 |
+
shift = 0
|
1871 |
+
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
|
1872 |
+
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + self.image_index_embedding[j]
|
1873 |
+
shift += ref_img_len
|
1874 |
+
|
1875 |
+
for layer in self.noise_refiner:
|
1876 |
+
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
|
1877 |
+
|
1878 |
+
flat_l_effective_ref_img_len = list(itertools.chain(*l_effective_ref_img_len))
|
1879 |
+
num_ref_images = len(flat_l_effective_ref_img_len)
|
1880 |
+
max_ref_img_len = max(flat_l_effective_ref_img_len)
|
1881 |
+
|
1882 |
+
batch_ref_img_mask = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, dtype=torch.bool)
|
1883 |
+
batch_ref_image_hidden_states = ref_image_hidden_states.new_zeros(num_ref_images, max_ref_img_len, self.config.hidden_size)
|
1884 |
+
batch_ref_img_rotary_emb = hidden_states.new_zeros(num_ref_images, max_ref_img_len, ref_img_rotary_emb.shape[-1], dtype=ref_img_rotary_emb.dtype)
|
1885 |
+
batch_temb = temb.new_zeros(num_ref_images, *temb.shape[1:], dtype=temb.dtype)
|
1886 |
+
|
1887 |
+
# sequence of ref imgs to batch
|
1888 |
+
idx = 0
|
1889 |
+
for i in range(batch_size):
|
1890 |
+
shift = 0
|
1891 |
+
for ref_img_len in l_effective_ref_img_len[i]:
|
1892 |
+
batch_ref_img_mask[idx, :ref_img_len] = True
|
1893 |
+
batch_ref_image_hidden_states[idx, :ref_img_len] = ref_image_hidden_states[i, shift:shift + ref_img_len]
|
1894 |
+
batch_ref_img_rotary_emb[idx, :ref_img_len] = ref_img_rotary_emb[i, shift:shift + ref_img_len]
|
1895 |
+
batch_temb[idx] = temb[i]
|
1896 |
+
shift += ref_img_len
|
1897 |
+
idx += 1
|
1898 |
+
|
1899 |
+
# refine ref imgs separately
|
1900 |
+
for layer in self.ref_image_refiner:
|
1901 |
+
batch_ref_image_hidden_states = layer(batch_ref_image_hidden_states, batch_ref_img_mask, batch_ref_img_rotary_emb, batch_temb)
|
1902 |
+
|
1903 |
+
# batch of ref imgs to sequence
|
1904 |
+
idx = 0
|
1905 |
+
for i in range(batch_size):
|
1906 |
+
shift = 0
|
1907 |
+
for ref_img_len in l_effective_ref_img_len[i]:
|
1908 |
+
ref_image_hidden_states[i, shift:shift + ref_img_len] = batch_ref_image_hidden_states[idx, :ref_img_len]
|
1909 |
+
shift += ref_img_len
|
1910 |
+
idx += 1
|
1911 |
+
|
1912 |
+
combined_img_hidden_states = hidden_states.new_zeros(batch_size, max_combined_img_len, self.config.hidden_size)
|
1913 |
+
for i, (ref_img_len, img_len) in enumerate(zip(l_effective_ref_img_len, l_effective_img_len)):
|
1914 |
+
combined_img_hidden_states[i, :sum(ref_img_len)] = ref_image_hidden_states[i, :sum(ref_img_len)]
|
1915 |
+
combined_img_hidden_states[i, sum(ref_img_len):sum(ref_img_len) + img_len] = hidden_states[i, :img_len]
|
1916 |
+
|
1917 |
+
return combined_img_hidden_states
|
1918 |
+
|
1919 |
+
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
|
1920 |
+
batch_size = len(hidden_states)
|
1921 |
+
p = self.config.patch_size
|
1922 |
+
device = hidden_states[0].device
|
1923 |
+
|
1924 |
+
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
|
1925 |
+
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]
|
1926 |
+
|
1927 |
+
if ref_image_hidden_states is not None:
|
1928 |
+
ref_img_sizes = [[(img.size(1), img.size(2)) for img in imgs] if imgs is not None else None for imgs in ref_image_hidden_states]
|
1929 |
+
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
|
1930 |
+
else:
|
1931 |
+
ref_img_sizes = [None for _ in range(batch_size)]
|
1932 |
+
l_effective_ref_img_len = [[0] for _ in range(batch_size)]
|
1933 |
+
|
1934 |
+
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
|
1935 |
+
max_img_len = max(l_effective_img_len)
|
1936 |
+
|
1937 |
+
# ref image patch embeddings
|
1938 |
+
flat_ref_img_hidden_states = []
|
1939 |
+
for i in range(batch_size):
|
1940 |
+
if ref_img_sizes[i] is not None:
|
1941 |
+
imgs = []
|
1942 |
+
for ref_img in ref_image_hidden_states[i]:
|
1943 |
+
C, H, W = ref_img.size()
|
1944 |
+
ref_img = rearrange(ref_img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
|
1945 |
+
imgs.append(ref_img)
|
1946 |
+
|
1947 |
+
img = torch.cat(imgs, dim=0)
|
1948 |
+
flat_ref_img_hidden_states.append(img)
|
1949 |
+
else:
|
1950 |
+
flat_ref_img_hidden_states.append(None)
|
1951 |
+
|
1952 |
+
# image patch embeddings
|
1953 |
+
flat_hidden_states = []
|
1954 |
+
for i in range(batch_size):
|
1955 |
+
img = hidden_states[i]
|
1956 |
+
C, H, W = img.size()
|
1957 |
+
|
1958 |
+
img = rearrange(img, 'c (h p1) (w p2) -> (h w) (p1 p2 c)', p1=p, p2=p)
|
1959 |
+
flat_hidden_states.append(img)
|
1960 |
+
|
1961 |
+
padded_ref_img_hidden_states = torch.zeros(batch_size, max_ref_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
|
1962 |
+
padded_ref_img_mask = torch.zeros(batch_size, max_ref_img_len, dtype=torch.bool, device=device)
|
1963 |
+
for i in range(batch_size):
|
1964 |
+
if ref_img_sizes[i] is not None:
|
1965 |
+
padded_ref_img_hidden_states[i, :sum(l_effective_ref_img_len[i])] = flat_ref_img_hidden_states[i]
|
1966 |
+
padded_ref_img_mask[i, :sum(l_effective_ref_img_len[i])] = True
|
1967 |
+
|
1968 |
+
padded_hidden_states = torch.zeros(batch_size, max_img_len, flat_hidden_states[0].shape[-1], device=device, dtype=flat_hidden_states[0].dtype)
|
1969 |
+
padded_img_mask = torch.zeros(batch_size, max_img_len, dtype=torch.bool, device=device)
|
1970 |
+
for i in range(batch_size):
|
1971 |
+
padded_hidden_states[i, :l_effective_img_len[i]] = flat_hidden_states[i]
|
1972 |
+
padded_img_mask[i, :l_effective_img_len[i]] = True
|
1973 |
+
|
1974 |
+
return (
|
1975 |
+
padded_hidden_states,
|
1976 |
+
padded_ref_img_hidden_states,
|
1977 |
+
padded_img_mask,
|
1978 |
+
padded_ref_img_mask,
|
1979 |
+
l_effective_ref_img_len,
|
1980 |
+
l_effective_img_len,
|
1981 |
+
ref_img_sizes,
|
1982 |
+
img_sizes,
|
1983 |
+
)
|
1984 |
+
|
1985 |
+
def forward(
|
1986 |
+
self,
|
1987 |
+
hidden_states: Union[torch.Tensor, List[torch.Tensor]],
|
1988 |
+
timestep: torch.Tensor,
|
1989 |
+
text_hidden_states: torch.Tensor,
|
1990 |
+
freqs_cis: torch.Tensor,
|
1991 |
+
text_attention_mask: torch.Tensor,
|
1992 |
+
ref_image_hidden_states: Optional[List[List[torch.Tensor]]] = None,
|
1993 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
1994 |
+
return_dict: bool = False,
|
1995 |
+
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
1996 |
+
if attention_kwargs is not None:
|
1997 |
+
attention_kwargs = attention_kwargs.copy()
|
1998 |
+
lora_scale = attention_kwargs.pop("scale", 1.0)
|
1999 |
+
else:
|
2000 |
+
lora_scale = 1.0
|
2001 |
+
|
2002 |
+
if USE_PEFT_BACKEND:
|
2003 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
2004 |
+
scale_lora_layers(self, lora_scale)
|
2005 |
+
else:
|
2006 |
+
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
2007 |
+
logger.warning(
|
2008 |
+
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
|
2009 |
+
)
|
2010 |
+
|
2011 |
+
# 1. Condition, positional & patch embedding
|
2012 |
+
batch_size = len(hidden_states)
|
2013 |
+
is_hidden_states_tensor = isinstance(hidden_states, torch.Tensor)
|
2014 |
+
|
2015 |
+
if is_hidden_states_tensor:
|
2016 |
+
assert hidden_states.ndim == 4
|
2017 |
+
hidden_states = [_hidden_states for _hidden_states in hidden_states]
|
2018 |
+
|
2019 |
+
device = hidden_states[0].device
|
2020 |
+
|
2021 |
+
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)
|
2022 |
+
|
2023 |
+
(
|
2024 |
+
hidden_states,
|
2025 |
+
ref_image_hidden_states,
|
2026 |
+
img_mask,
|
2027 |
+
ref_img_mask,
|
2028 |
+
l_effective_ref_img_len,
|
2029 |
+
l_effective_img_len,
|
2030 |
+
ref_img_sizes,
|
2031 |
+
img_sizes,
|
2032 |
+
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
|
2033 |
+
|
2034 |
+
(
|
2035 |
+
context_rotary_emb,
|
2036 |
+
ref_img_rotary_emb,
|
2037 |
+
noise_rotary_emb,
|
2038 |
+
rotary_emb,
|
2039 |
+
encoder_seq_lengths,
|
2040 |
+
seq_lengths,
|
2041 |
+
) = self.rope_embedder(
|
2042 |
+
freqs_cis,
|
2043 |
+
text_attention_mask,
|
2044 |
+
l_effective_ref_img_len,
|
2045 |
+
l_effective_img_len,
|
2046 |
+
ref_img_sizes,
|
2047 |
+
img_sizes,
|
2048 |
+
device,
|
2049 |
+
)
|
2050 |
+
|
2051 |
+
# 2. Context refinement
|
2052 |
+
for layer in self.context_refiner:
|
2053 |
+
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
|
2054 |
+
|
2055 |
+
combined_img_hidden_states = self.img_patch_embed_and_refine(
|
2056 |
+
hidden_states,
|
2057 |
+
ref_image_hidden_states,
|
2058 |
+
img_mask,
|
2059 |
+
ref_img_mask,
|
2060 |
+
noise_rotary_emb,
|
2061 |
+
ref_img_rotary_emb,
|
2062 |
+
l_effective_ref_img_len,
|
2063 |
+
l_effective_img_len,
|
2064 |
+
temb,
|
2065 |
+
)
|
2066 |
+
|
2067 |
+
# 3. Joint Transformer blocks
|
2068 |
+
max_seq_len = max(seq_lengths)
|
2069 |
+
|
2070 |
+
attention_mask = hidden_states.new_zeros(batch_size, max_seq_len, dtype=torch.bool)
|
2071 |
+
joint_hidden_states = hidden_states.new_zeros(batch_size, max_seq_len, self.config.hidden_size)
|
2072 |
+
for i, (encoder_seq_len, seq_len) in enumerate(zip(encoder_seq_lengths, seq_lengths)):
|
2073 |
+
attention_mask[i, :seq_len] = True
|
2074 |
+
joint_hidden_states[i, :encoder_seq_len] = text_hidden_states[i, :encoder_seq_len]
|
2075 |
+
joint_hidden_states[i, encoder_seq_len:seq_len] = combined_img_hidden_states[i, :seq_len - encoder_seq_len]
|
2076 |
+
|
2077 |
+
hidden_states = joint_hidden_states
|
2078 |
+
|
2079 |
+
for layer_idx, layer in enumerate(self.layers):
|
2080 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
2081 |
+
hidden_states = self._gradient_checkpointing_func(
|
2082 |
+
layer, hidden_states, attention_mask, rotary_emb, temb
|
2083 |
+
)
|
2084 |
+
else:
|
2085 |
+
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
|
2086 |
+
|
2087 |
+
# 4. Output norm & projection
|
2088 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
2089 |
+
|
2090 |
+
p = self.config.patch_size
|
2091 |
+
output = []
|
2092 |
+
for i, (img_size, img_len, seq_len) in enumerate(zip(img_sizes, l_effective_img_len, seq_lengths)):
|
2093 |
+
height, width = img_size
|
2094 |
+
output.append(rearrange(hidden_states[i][seq_len - img_len:seq_len], '(h w) (p1 p2 c) -> c (h p1) (w p2)', h=height // p, w=width // p, p1=p, p2=p))
|
2095 |
+
if is_hidden_states_tensor:
|
2096 |
+
output = torch.stack(output, dim=0)
|
2097 |
+
|
2098 |
+
if USE_PEFT_BACKEND:
|
2099 |
+
# remove `lora_scale` from each PEFT layer
|
2100 |
+
unscale_lora_layers(self, lora_scale)
|
2101 |
+
|
2102 |
+
if not return_dict:
|
2103 |
+
return output
|
2104 |
+
return Transformer2DModelOutput(sample=output)
|